The fulltext of publications might not be freely accessible but require subscription. Please request reprints at

Publications in peer reviewed journals

6 Publications found
  • Genome-Wide Mutation Scoring for Machine-Learning-Based Antimicrobial Resistance Prediction.

    Májek P, Lüftinger L, Beisken S, Rattei T, Materna A
    2021 - Int J Mol Sci, 23: in press


    The prediction of antimicrobial resistance (AMR) based on genomic information can improve patient outcomes. Genetic mechanisms have been shown to explain AMR with accuracies in line with standard microbiology laboratory testing. To translate genetic mechanisms into phenotypic AMR, machine learning has been successfully applied. AMR machine learning models typically use nucleotide k-mer counts to represent genomic sequences. While k-mer representation efficiently captures sequence variation, it also results in high-dimensional and sparse data. With limited training data available, achieving acceptable model performance or model interpretability is challenging. In this study, we explore the utility of feature engineering with several biologically relevant signals. We propose to predict the functional impact of observed mutations with PROVEAN to use the predicted impact as a new feature for each protein in an organism's proteome. The addition of the new features was tested on a total of 19,521 isolates across nine clinically relevant pathogens and 30 different antibiotics. The new features significantly improved the predictive performance of trained AMR models for , , and . The balanced accuracy of the respective models of those three pathogens improved by 6.0% on average.

  • Predictive Antibiotic Susceptibility Testing by Next-Generation Sequencing for Periprosthetic Joint Infections: Potential and Limitations.

    Lüftinger L, Ferreira I, Frank BJH, Beisken S, Weinberger J, von Haeseler A, Rattei T, Hofstaetter JG, Posch AE, Materna A
    2021 - Biomedicines, 8: in press


    Joint replacement surgeries are one of the most frequent medical interventions globally. Infections of prosthetic joints are a major health challenge and typically require prolonged or even indefinite antibiotic treatment. As multidrug-resistant pathogens continue to rise globally, novel diagnostics are critical to ensure appropriate treatment and help with prosthetic joint infections (PJI) management. To this end, recent studies have shown the potential of molecular methods such as next-generation sequencing to complement established phenotypic, culture-based methods. Together with advanced bioinformatics approaches, next-generation sequencing can provide comprehensive information on pathogen identity as well as antimicrobial susceptibility, potentially enabling rapid diagnosis and targeted therapy of PJIs. In this review, we summarize current developments in next generation sequencing based predictive antibiotic susceptibility testing and discuss potential and limitations for common PJI pathogens.

  • Genomic insights into diverse bacterial taxa that degrade extracellular DNA in marine sediments.

    Wasmund K, Pelikan C, Schintlmeister A, Wagner M, Watzka M, Richter A, Bhatnagar S, Noel A, Hubert CRJ, Rattei T, Hofmann T, Hausmann B, Herbold CW, Loy A
    2021 - Nat Microbiol, 7: 885-898


    Extracellular DNA is a major macromolecule in global element cycles, and is a particularly crucial phosphorus, nitrogen and carbon source for microorganisms in the seafloor. Nevertheless, the identities, ecophysiology and genetic features of DNA-foraging microorganisms in marine sediments are largely unknown. Here, we combined microcosm experiments, DNA stable isotope probing (SIP), single-cell SIP using nano-scale secondary isotope mass spectrometry (NanoSIMS) and genome-centric metagenomics to study microbial catabolism of DNA and its subcomponents in marine sediments. C-DNA added to sediment microcosms was largely degraded within 10 d and mineralized to CO. SIP probing of DNA revealed diverse 'Candidatus Izemoplasma', Lutibacter, Shewanella and Fusibacteraceae incorporated DNA-derived C-carbon. NanoSIMS confirmed incorporation of C into individual bacterial cells of Fusibacteraceae sorted from microcosms. Genomes of the C-labelled taxa all encoded enzymatic repertoires for catabolism of DNA or subcomponents of DNA. Comparative genomics indicated that diverse 'Candidatus Izemoplasmatales' (former Tenericutes) are exceptional because they encode multiple (up to five) predicted extracellular nucleases and are probably specialized DNA-degraders. Analyses of additional sediment metagenomes revealed extracellular nuclease genes are prevalent among Bacteroidota at diverse sites. Together, our results reveal the identities and functional properties of microorganisms that may contribute to the key ecosystem function of degrading and recycling DNA in the seabed.

  • Novel taxa of Acidobacteriota implicated in seafloor sulfur cycling.

    Flieder M, Buongiorno J, Herbold CW, Hausmann B, Rattei T, Lloyd KG, Loy A, Wasmund K
    2021 - ISME J, 11: 3159-3180


    Acidobacteriota are widespread and often abundant in marine sediments, yet their metabolic and ecological properties are poorly understood. Here, we examined metabolisms and distributions of Acidobacteriota in marine sediments of Svalbard by functional predictions from metagenome-assembled genomes (MAGs), amplicon sequencing of 16S rRNA and dissimilatory sulfite reductase (dsrB) genes and transcripts, and gene expression analyses of tetrathionate-amended microcosms. Acidobacteriota were the second most abundant dsrB-harboring (averaging 13%) phylum after Desulfobacterota in Svalbard sediments, and represented 4% of dsrB transcripts on average. Meta-analysis of dsrAB datasets also showed Acidobacteriota dsrAB sequences are prominent in marine sediments worldwide, averaging 15% of all sequences analysed, and represent most of the previously unclassified dsrAB in marine sediments. We propose two new Acidobacteriota genera, Candidatus Sulfomarinibacter (class Thermoanaerobaculia, "subdivision 23") and Ca. Polarisedimenticola ("subdivision 22"), with distinct genetic properties that may explain their distributions in biogeochemically distinct sediments. Ca. Sulfomarinibacter encode flexible respiratory routes, with potential for oxygen, nitrous oxide, metal-oxide, tetrathionate, sulfur and sulfite/sulfate respiration, and possibly sulfur disproportionation. Potential nutrients and energy include cellulose, proteins, cyanophycin, hydrogen, and acetate. A Ca. Polarisedimenticola MAG encodes various enzymes to degrade proteins, and to reduce oxygen, nitrate, sulfur/polysulfide and metal-oxides. 16S rRNA gene and transcript profiling of Svalbard sediments showed Ca. Sulfomarinibacter members were relatively abundant and transcriptionally active in sulfidic fjord sediments, while Ca. Polarisedimenticola members were more relatively abundant in metal-rich fjord sediments. Overall, we reveal various physiological features of uncultured marine Acidobacteriota that indicate fundamental roles in seafloor biogeochemical cycling.

  • Regulation of the Mitochondrion-Fatty Acid Axis for the Metabolic Reprogramming of Chlamydia trachomatis during Treatment with β-Lactam Antimicrobials.

    Shima K, Kaufhold I, Eder T, Käding N, Schmidt N, Ogunsulire IM, Deenen R, Köhrer K, Friedrich D, Isay SE, Grebien F, Klinger M, Richer BC, Günther UL, Deepe GS, Rattei T, Rupp J
    2021 - mBio, 2: in press


    Infection with the obligate intracellular bacterium is the most common bacterial sexually transmitted disease worldwide. Since no vaccine is available to date, antimicrobial therapy is the only alternative in infection. However, changes in chlamydial replicative activity and the occurrence of chlamydial persistence caused by diverse stimuli have been proven to impair treatment effectiveness. Here, we report the mechanism for regulating host signaling processes and mitochondrial function, which can be used for chlamydial metabolic reprogramming during treatment with β-lactam antimicrobials. Activation of signal transducer and activator of transcription 3 (STAT3) is a well-known host response in various bacterial and viral infections. In infection, inactivation of STAT3 by host protein tyrosine phosphatases increased mitochondrial respiration in both the absence and presence of β-lactam antimicrobials. However, during treatment with β-lactam antimicrobials, increased the production of citrate as well as the activity of host ATP-citrate lyase involved in fatty acid synthesis. Concomitantly, chlamydial metabolism switched from the tricarboxylic acid cycle to fatty acid synthesis. This metabolic switch was a unique response in treatment with β-lactam antimicrobials and was not observed in gamma interferon (IFN-γ)-induced persistent infection. Inhibition of fatty acid synthesis was able to attenuate β-lactam-induced chlamydial persistence. Our findings highlight the importance of the mitochondrion-fatty acid interplay for the metabolic reprogramming of during treatment with β-lactam antimicrobials. The mitochondrion generates most of the ATP in eukaryotic cells, and its activity is used for controlling the intracellular growth of Furthermore, mitochondrial activity is tightly connected to host fatty acid synthesis that is indispensable for chlamydial membrane biogenesis. Phospholipids, which are composed of fatty acids, are the central components of the bacterial membrane and play a crucial role in the protection against antimicrobials. Chlamydial persistence that is induced by various stimuli is clinically relevant. While one of the well-recognized inducers, β-lactam antimicrobials, has been used to characterize chlamydial persistence, little is known about the role of mitochondria in persistent infection. Here, we demonstrate how undergoes metabolic reprogramming to switch from the tricarboxylic acid cycle to fatty acid synthesis with promoted host mitochondrial activity in response to treatment with β-lactam antimicrobials.

  • Isolate-Based Surveillance of Bordetella pertussis, Austria, 2018-2020.

    Cabal A, Schmid D, Hell M, Chakeri A, Mustafa-Korninger E, Wojna A, Stöger A, Möst J, Leitner E, Hyden P, Rattei T, Habington A, Wiedermann U, Allerberger F, Ruppitsch W
    2021 - Emerg Infect Dis, 3: 862-871


    Pertussis is a vaccine-preventable disease, and its recent resurgence might be attributable to the emergence of strains that differ genetically from the vaccine strain. We describe a novel pertussis isolate-based surveillance system and a core genome multilocus sequence typing scheme to assess Bordetella pertussis genetic variability and investigate the increased incidence of pertussis in Austria. During 2018-2020, we obtained 123 B. pertussis isolates and typed them with the new scheme (2,983 targets and preliminary cluster threshold of <6 alleles). B. pertussis isolates in Austria differed genetically from the vaccine strain, both in their core genomes and in their vaccine antigen genes; 31.7% of the isolates were pertactin-deficient. We detected 8 clusters, 1 of them with pertactin-deficient isolates and possibly part of a local outbreak. National expansion of the isolate-based surveillance system is needed to implement pertussis-control strategies.

Book chapters and other publications

No matching database entries were found.