• Our new home

    since summer 2021.

  • Our aim is to advance our understanding of biological systems,

    ranging from single species to multi-species systems and ecosystems,

    based on data from large-scale bioanalytical methods.

  • We develop, improve and apply

    computational methods

    for the interpretation of molecular information in biology.

  • We establish and analyse

    quantitative mathematical models.


Latest publications

eggNOG 6.0: enabling comparative genomics across 12 535 organisms.

The eggNOG (evolutionary gene genealogy Non-supervised Orthologous Groups) database is a bioinformatics resource providing orthology data and comprehensive functional information for organisms from all domains of life. Here, we present a major update of the database and website (version 6.0), which increases the number of covered organisms to 12 535 reference species, expands functional annotations, and implements new functionality. In total, eggNOG 6.0 provides a hierarchy of over 17M orthologous groups (OGs) computed at 1601 taxonomic levels, spanning 10 756 bacterial, 457 archaeal and 1322 eukaryotic organisms. OGs have been thoroughly annotated using recent knowledge from functional databases, including KEGG, Gene Ontology, UniProtKB, BiGG, CAZy, CARD, PFAM and SMART. eggNOG also offers phylogenetic trees for all OGs, maximising utility and versatility for end users while allowing researchers to investigate the evolutionary history of speciation and duplication events as well as the phylogenetic distribution of functional terms within each OG. Furthermore, the eggNOG 6.0 website contains new functionality to mine orthology and functional data with ease, including the possibility of generating phylogenetic profiles for multiple OGs across species or identifying single-copy OGs at custom taxonomic levels. eggNOG 6.0 is available at http://eggnog6.embl.de.

Hernández-Plaza A, Szklarczyk D, Botas J, Cantalapiedra CP, Giner-Lamia J, Mende DR, Kirsch R, Rattei T, Letunic I, Jensen LJ, Bork P, von Mering C, Huerta-Cepas J
2023 - Nucleic Acids Res, 1: D389-D394

One to host them all: genomics of the diverse bacterial endosymbionts of the spider .

Bacterial endosymbionts of the groups , and are well known for their diverse effects on their arthropod hosts, ranging from mutualistic relationships to reproductive phenotypes. Here, we analysed a unique system in which the dwarf spider is co-infected with up to five different endosymbionts affiliated with , ' Tisiphia' (formerly Torix group ), and . Using short-read genome sequencing data, we show that the endosymbionts are heterogeneously distributed among populations and are frequently found co-infecting spider individuals. To study this intricate host-endosymbiont system on a genome-resolved level, we used long-read sequencing to reconstruct closed genomes of the , '. Tisiphia' and endosymbionts. We provide insights into the ecology and evolution of the endosymbionts and shed light on the interactions with their spider host. We detected high quantities of transposable elements in all endosymbiont genomes and provide evidence that ancestors of the , '. Tisiphia' and endosymbionts have co-infected the same hosts in the past. Our findings contribute to broadening our knowledge about endosymbionts infecting one of the largest animal phyla on Earth and show the usefulness of transposable elements as an evolutionary 'contact-tracing' tool.

Halter T, Köstlbacher S, Rattei T, Hendrickx F, Manzano-Marín A, Horn M
2023 - Microb Genom, 2: in press

Secondary Metabolite Production Potential in a Microbiome of the Freshwater Sponge Spongilla lacustris.

Marine and freshwater sponges harbor diverse communities of bacteria with vast potential to produce secondary metabolites that may play an important role in protecting the host from predators and infections. In this work, we initially used cultivation and metagenomics to investigate the microbial community of the freshwater sponge Spongilla lacustris collected in an Austrian lake. Representatives of 41 bacterial genera were isolated from the sponge sample and classified according to their 16S rRNA gene sequences. The genomes of 33 representative isolates and the 20 recovered metagenome-assembled genomes (MAGs) contained in total 306 secondary metabolite biosynthesis gene clusters (BGCs). Comparative 16S rRNA gene and genome analyses showed very little taxon overlap between the recovered isolates and the sponge community as revealed by cultivation-independent methods. Both culture-independent and -dependent analyses suggested high biosynthetic potential of the S. lacustris microbiome, which was confirmed experimentally even at the subspecies level for two isolates. To our knowledge, this is the most thorough description of the secondary metabolite production potential of a freshwater sponge microbiome to date. A large body of research is dedicated to marine sponges, filter-feeding animals harboring rich bacterial microbiomes believed to play an important role in protecting the host from predators and infections. Freshwater sponges have received so far much less attention with respect to their microbiomes, members of which may produce bioactive secondary metabolites with potential to be developed into drugs to treat a variety of diseases. In this work, we investigated the potential of bacteria associated with the freshwater sponge to biosynthesize diverse secondary metabolites. Using culture-dependent and -independent methods, we discovered over 300 biosynthetic gene clusters in sponge-associated bacteria and proved production of several compounds by selected isolates using genome mining. Our results illustrate the importance of a complex approach when dealing with microbiomes of multicellular organisms that may contain producers of medically important secondary metabolites.

Graffius S, Garzón JFG, Zehl M, Pjevac P, Kirkegaard R, Flieder M, Loy A, Rattei T, Ostrovsky A, Zotchev SB
2023 - Microbiol Spectr, e0435322