The fulltext of publications might not be freely accessible but require subscription. Please request reprints at

Publications in peer reviewed journals

2 Publications found
  • Tamock: simulation of habitat-specific benchmark data in metagenomics.

    Gerner SM, Graf AB, Rattei T
    2021 - BMC Bioinformatics, 1: 227


    Simulated metagenomic reads are widely used to benchmark software and workflows for metagenome interpretation. The results of metagenomic benchmarks depend on the assumptions about their underlying ecosystems. Conclusions from benchmark studies are therefore limited to the ecosystems they mimic. Ideally, simulations are therefore based on genomes, which resemble particular metagenomic communities realistically.
    We developed Tamock to facilitate the realistic simulation of metagenomic reads according to a metagenomic community, based on real sequence data. Benchmarks samples can be created from all genomes and taxonomic domains present in NCBI RefSeq. Tamock automatically determines taxonomic profiles from shotgun sequence data, selects reference genomes accordingly and uses them to simulate metagenomic reads. We present an example use case for Tamock by assessing assembly and binning method performance for selected microbiomes.
    Tamock facilitates automated simulation of habitat-specific benchmark metagenomic data based on real sequence data and is implemented as a user-friendly command-line application, providing extensive additional information along with the simulated benchmark data. Resulting benchmarks enable an assessment of computational methods, workflows, and parameters specifically for a metagenomic habitat or ecosystem of a metagenomic study.
    Source code, documentation and install instructions are freely available at GitHub ( ).

  • Sulfoquinovose is a select nutrient of prominent bacteria and a source of hydrogen sulfide in the human gut.

    Hanson BT, Dimitri Kits K, Löffler J, Burrichter AG, Fiedler A, Denger K, Frommeyer B, Herbold CW, Rattei T, Karcher N, Segata N, Schleheck D, Loy A
    2021 - ISME J, in press


    Responses of the microbiota to diet are highly personalized but mechanistically not well understood because many metabolic capabilities and interactions of human gut microorganisms are unknown. Here we show that sulfoquinovose (SQ), a sulfonated monosaccharide omnipresent in green vegetables, is a selective yet relevant substrate for few but ubiquitous bacteria in the human gut. In human feces and in defined co-culture, Eubacterium rectale and Bilophila wadsworthia used recently identified pathways to cooperatively catabolize SQ with 2,3-dihydroxypropane-1-sulfonate as a transient intermediate to hydrogen sulfide (HS), a key intestinal metabolite with disparate effects on host health. SQ-degradation capability is encoded in almost half of E. rectale genomes but otherwise sparsely distributed among microbial species in the human intestine. However, re-analysis of fecal metatranscriptome datasets of four human cohorts showed that SQ degradation (mostly from E. rectale and Faecalibacterium prausnitzii) and HS production (mostly from B. wadsworthia) pathways were expressed abundantly across various health states, demonstrating that these microbial functions are core attributes of the human gut. The discovery of green-diet-derived SQ as an exclusive microbial nutrient and an additional source of HS in the human gut highlights the role of individual dietary compounds and organosulfur metabolism on microbial activity and has implications for precision editing of the gut microbiota by dietary and prebiotic interventions.

Book chapters and other publications

No matching database entries were found.