Publications

The fulltext of publications might not be freely accessible but require subscription. Please request reprints at contact.cube@univie.ac.at.

Publications in peer reviewed journals

14 Publications found
  • The origin and evolution of cell types.

    Arendt D, Musser JM, Baker CV, Bergman A, Cepko C, Erwin DH, Pavličev M, Schlosser G, Widder S, Laubichler MD, Wagner GP
    2016 - Nat. Rev. Genet., 12: 744-757

    Abstract: 

    Cell types are the basic building blocks of multicellular organisms and are extensively diversified in animals. Despite recent advances in characterizing cell types, classification schemes remain ambiguous. We propose an evolutionary definition of a cell type that allows cell types to be delineated and compared within and between species. Key to cell type identity are evolutionary changes in the 'core regulatory complex' (CoRC) of transcription factors, that make emergent sister cell types distinct, enable their independent evolution and regulate cell type-specific traits termed apomeres. We discuss the distinction between developmental and evolutionary lineages, and present a roadmap for future research.

  • A distinct microbiota composition is associated with protection from food allergy in an oral mouse immunization model.

    Diesner SC, Bergmayr C, Pfitzner B, Assmann V, Krishnamurthy D, Starkl P, Endesfelder D, Rothballer M, Welzl G, Rattei T, Eiwegger T, Szépfalusi Z, Fehrenbach H, Jensen-Jarolim E, Hartmann A, Pali-Schöll I, Untersmayr E
    2016 - Clin. Immunol., 10-18

    Abstract: 

    In our mouse model, gastric acid-suppression is associated with antigen-specific IgE and anaphylaxis development. We repeatedly observed non-responder animals protected from food allergy. Here, we aimed to analyse reasons for this protection. Ten out of 64 mice, subjected to oral ovalbumin (OVA) immunizations under gastric acid-suppression, were non-responders without OVA-specific IgE or IgG1 elevation, indicating protection from allergy. In these non-responders, allergen challenges confirmed reduced antigen uptake and lack of anaphylactic symptoms, while in allergic mice high levels of mouse mast-cell protease-1 and a body temperature reduction, indicative for anaphylaxis, were determined. Upon OVA stimulation, significantly lower IL-4, IL-5, IL-10 and IL-13 levels were detected in non-responders, while IL-22 was significantly higher. Comparison of fecal microbiota revealed differences of bacterial communities on single bacterial Operational-Taxonomic-Unit level between the groups, indicating protection from food allergy being associated with a distinct microbiota composition in a non-responding phenotype in this mouse model.

  • NVT: a fast and simple tool for the assessment of RNA-seq normalization strategies.

    Eder T, Grebien F, Rattei T
    2016 - Bioinformatics, in press

    Abstract: 

    Measuring differential gene expression is a common task in the analysis of RNA-Seq data. To identify differentially expressed genes between two samples, it is crucial to normalize the datasets. While multiple normalization methods are available, all of them are based on certain assumptions that may or may not be suitable for the type of data they are applied on. Researchers therefore need to select an adequate normalization strategy for each RNA-Seq experiment. This selection includes exploration of different normalization methods as well as their comparison. Methods that agree with each other most likely represent realistic assumptions under the particular experimental conditions.
    We developed the NVT package, which provides a fast and simple way to analyze and evaluate multiple normalization methods via visualization and representation of correlation values, based on a user-defined set of uniformly expressed genes.
    The R package is freely available under https://github.com/Edert/NVT CONTACT: thomas.rattei@univie.ac.atSupplementary information: Supplementary data are available at Bioinformatics online.

  • Comprehensive Identification of Meningococcal Genes and Small Noncoding RNAs Required for Host Cell Colonization.

    Capel E, Zomer AL, Nussbaumer T, Bole C, Izac B, Frapy E, Meyer J, Bouzinba-Ségard H, Bille E, Jamet A, Cavau A, Letourneur F, Bourdoulous S, Rattei T, Nassif X, Coureuil M
    2016 - mBio, 4: in press

    Abstract: 

    Neisseria meningitidis is a leading cause of bacterial meningitis and septicemia, affecting infants and adults worldwide. N. meningitidis is also a common inhabitant of the human nasopharynx and, as such, is highly adapted to its niche. During bacteremia, N. meningitidis gains access to the blood compartment, where it adheres to endothelial cells of blood vessels and causes dramatic vascular damage. Colonization of the nasopharyngeal niche and communication with the different human cell types is a major issue of the N. meningitidis life cycle that is poorly understood. Here, highly saturated random transposon insertion libraries of N. meningitidis were engineered, and the fitness of mutations during routine growth and that of colonization of endothelial and epithelial cells in a flow device were assessed in a transposon insertion site sequencing (Tn-seq) analysis. This allowed the identification of genes essential for bacterial growth and genes specifically required for host cell colonization. In addition, after having identified the small noncoding RNAs (sRNAs) located in intergenic regions, the phenotypes associated with mutations in those sRNAs were defined. A total of 383 genes and 8 intergenic regions containing sRNA candidates were identified to be essential for growth, while 288 genes and 33 intergenic regions containing sRNA candidates were found to be specifically required for host cell colonization.
    Meningococcal meningitis is a common cause of meningitis in infants and adults. Neisseria meningitidis (meningococcus) is also a commensal bacterium of the nasopharynx and is carried by 3 to 30% of healthy humans. Under some unknown circumstances, N. meningitidis is able to invade the bloodstream and cause either meningitis or a fatal septicemia known as purpura fulminans. The onset of symptoms is sudden, and death can follow within hours. Although many meningococcal virulence factors have been identified, the mechanisms that allow the bacterium to switch from the commensal to pathogen state remain unknown. Therefore, we used a Tn-seq strategy coupled to high-throughput DNA sequencing technologies to find genes for proteins used by N. meningitidis to specifically colonize epithelial cells and primary brain endothelial cells. We identified 383 genes and 8 intergenic regions containing sRNAs essential for growth and 288 genes and 33 intergenic regions containing sRNAs required specifically for host cell colonization.

  • ConsPred: a rule-based (re-)annotation framework for prokaryotic genomes.

    Weinmaier T, Platzer A, Frank J, Hellinger HJ, Tischler P, Rattei T
    2016 - Bioinformatics, in press

    Abstract: 

    The rapidly growing number of available prokaryotic genome sequences requires fully automated and high-quality software solutions for their initial and re-annotation. Here we present ConsPred, a prokaryotic genome annotation framework that performs intrinsic gene predictions, homology searches, predictions of non-coding genes as well as CRISPR repeats and integrates all evidence into a consensus annotation. ConsPred achieves comprehensive, high-quality annotations based on rules and priorities, similar to decision-making in manual curation and avoids conflicting predictions. Parameters controlling the annotation process are configurable by the user. ConsPred has been used in the institutions of the authors for longer than 5 years and can easily be extended and adapted to specific needs.
    The ConsPred algorithm for producing a consensus from the varying scores of multiple gene prediction programs approaches manual curation in accuracy. Its rule-based approach for choosing final predictions avoids overriding previous manual curations.
    ConsPred is implemented in Java, Perl and Shell and is freely available under the Creative Commons license as a stand-alone in-house pipeline or as an Amazon Machine Image for cloud computing, see https://sourceforge.net/projects/conspred/.
    thomas.rattei@univie.ac.atSupplementary information: Supplementary data are available at Bioinformatics online.

  • HoloVir: A Workflow for Investigating the Diversity and Function of Viruses in Invertebrate Holobionts.

    Laffy PW, Wood-Charlson EM, Turaev D, Weynberg KD, Botté ES, van Oppen MJ, Webster NS, Rattei T
    2016 - Front Microbiol, 822

    Abstract: 

    Abundant bioinformatics resources are available for the study of complex microbial metagenomes, however their utility in viral metagenomics is limited. HoloVir is a robust and flexible data analysis pipeline that provides an optimized and validated workflow for taxonomic and functional characterization of viral metagenomes derived from invertebrate holobionts. Simulated viral metagenomes comprising varying levels of viral diversity and abundance were used to determine the optimal assembly and gene prediction strategy, and multiple sequence assembly methods and gene prediction tools were tested in order to optimize our analysis workflow. HoloVir performs pairwise comparisons of single read and predicted gene datasets against the viral RefSeq database to assign taxonomy and additional comparison to phage-specific and cellular markers is undertaken to support the taxonomic assignments and identify potential cellular contamination. Broad functional classification of the predicted genes is provided by assignment of COG microbial functional category classifications using EggNOG and higher resolution functional analysis is achieved by searching for enrichment of specific Swiss-Prot keywords within the viral metagenome. Application of HoloVir to viral metagenomes from the coral Pocillopora damicornis and the sponge Rhopaloeides odorabile demonstrated that HoloVir provides a valuable tool to characterize holobiont viral communities across species, environments, or experiments.

  • Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies.

    Güllert S, Fischer MA, Turaev D, Noebauer B, Ilmberger N, Wemheuer B, Alawi M, Rattei T, Daniel R, Schmitz RA, Grundhoff A, Streit WR
    2016 - Biotechnol Biofuels, 121

    Abstract: 

    The diverse microbial communities in agricultural biogas fermenters are assumed to be well adapted for the anaerobic transformation of plant biomass to methane. Compared to natural systems, biogas reactors are limited in their hydrolytic potential. The reasons for this are not understood.
    In this paper, we show that a typical industrial biogas reactor fed with maize silage, cow manure, and chicken manure has relatively lower hydrolysis rates compared to feces samples from herbivores. We provide evidence that on average, 2.5 genes encoding cellulolytic GHs/Mbp were identified in the biogas fermenter compared to 3.8 in the elephant feces and 3.2 in the cow rumen data sets. The ratio of genes coding for cellulolytic GH enzymes affiliated with the Firmicutes versus the Bacteroidetes was 2.8:1 in the biogas fermenter compared to 1:1 in the elephant feces and 1.4:1 in the cow rumen sample. Furthermore, RNA-Seq data indicated that highly transcribed cellulases in the biogas fermenter were four times more often affiliated with the Firmicutes compared to the Bacteroidetes, while an equal distribution of these enzymes was observed in the elephant feces sample.
    Our data indicate that a relatively lower abundance of bacteria affiliated with the phylum of Bacteroidetes and, to some extent, Fibrobacteres is associated with a decreased richness of predicted lignocellulolytic enzymes in biogas fermenters. This difference can be attributed to a partial lack of genes coding for cellulolytic GH enzymes derived from bacteria which are affiliated with the Fibrobacteres and, especially, the Bacteroidetes. The partial deficiency of these genes implies a potentially important limitation in the biogas fermenter with regard to the initial hydrolysis of biomass. Based on these findings, we speculate that increasing the members of Bacteroidetes and Fibrobacteres in biogas fermenters will most likely result in an increased hydrolytic performance.

  • Suppressed recombination and unique candidate genes in the divergent haplotype encoding Fhb1, a major Fusarium head blight resistance locus in wheat.

    Schweiger W, Steiner B, Vautrin S, Nussbaumer T, Siegwart G, Zamini M, Jungreithmeier F, Gratl V, Lemmens M, Mayer KF, Bérgès H, Adam G, Buerstmayr H
    2016 - Theor. Appl. Genet., 8: 1607-23

    Abstract: 

    Fine mapping and sequencing revealed 28 genes in the non-recombining haplotype containing Fhb1 . Of these, only a GDSL lipase gene shows a pathogen-dependent expression pattern. Fhb1 is a prominent Fusarium head blight resistance locus of wheat, which has been successfully introgressed in adapted breeding material, where it confers a significant increase in overall resistance to the causal pathogen Fusarium graminearum and the fungal virulence factor and mycotoxin deoxynivalenol. The Fhb1 region has been resolved for the susceptible wheat reference genotype Chinese Spring, yet the causal gene itself has not been identified in resistant cultivars. Here, we report the establishment of a 1 Mb contig embracing Fhb1 in the donor line CM-82036. Sequencing revealed that the region of Fhb1 deviates from the Chinese Spring reference in DNA size and gene content, which explains the repressed recombination at the locus in the performed fine mapping. Differences in genes expression between near-isogenic lines segregating for Fhb1 challenged with F. graminearum or treated with mock were investigated in a time-course experiment by RNA sequencing. Several candidate genes were identified, including a pathogen-responsive GDSL lipase absent in susceptible lines. The sequence of the Fhb1 region, the resulting list of candidate genes, and near-diagnostic KASP markers for Fhb1 constitute a valuable resource for breeding and further studies aiming to identify the gene(s) responsible for F. graminearum and deoxynivalenol resistance.

  • High definition for systems biology of microbial communities: metagenomics gets genome-centric and strain-resolved.

    2016 - Curr. Opin. Biotechnol., 174-181

    Abstract: 

    The systems biology of microbial communities, organismal communities inhabiting all ecological niches on earth, has in recent years been strongly facilitated by the rapid development of experimental, sequencing and data analysis methods. Novel experimental approaches and binning methods in metagenomics render the semi-automatic reconstructions of near-complete genomes of uncultivable bacteria possible, while advances in high-resolution amplicon analysis allow for efficient and less biased taxonomic community characterization. This will also facilitate predictive modeling approaches, hitherto limited by the low resolution of metagenomic data. In this review, we pinpoint the most promising current developments in metagenomics. They facilitate microbial systems biology towards a systemic understanding of mechanisms in microbial communities with scopes of application in many areas of our daily life.

  • Transcriptomic and Proteomic Analysis of Arion vulgaris-Proteins for Probably Successful Survival Strategies?

    Bulat T, Smidak R, Sialana FJ, Jung G, Rattei T, Bilban M, Sattmann H, Lubec G, Aradska J
    2016 - PloS one, 3: e0150614

    Abstract: 

    The Spanish slug, Arion vulgaris, is considered one of the hundred most invasive species in Central Europe. The immense and very successful adaptation and spreading of A. vulgaris suggest that it developed highly effective mechanisms to deal with infections and natural predators. Current transcriptomic and proteomic studies on gastropods have been restricted mainly to marine and freshwater gastropods. No transcriptomic or proteomic study on A. vulgaris has been carried out so far, and in the current study, the first transcriptomic database from adult specimen of A. vulgaris is reported. To facilitate and enable proteomics in this non-model organism, a mRNA-derived protein database was constructed for protein identification. A gel-based proteomic approach was used to obtain the first generation of a comprehensive slug mantle proteome. A total of 2128 proteins were unambiguously identified; 48 proteins represent novel proteins with no significant homology in NCBI non-redundant database. Combined transcriptomic and proteomic analysis revealed an extensive repertoire of novel proteins with a role in innate immunity including many associated pattern recognition, effector proteins and cytokine-like proteins. The number and diversity in gene families encoding lectins point to a complex defense system, probably as a result of adaptation to a pathogen-rich environment. These results are providing a fundamental and important resource for subsequent studies on molluscs as well as for putative antimicrobial compounds for drug discovery and biomedical applications.

  • The 5300-year-old Helicobacter pylori genome of the Iceman.

    Maixner F, Krause-Kyora B, Turaev D, Herbig A, Hoopmann MR, Hallows JL, Kusebauch U, Vigl EE, Malfertheiner P, Megraud F, O'Sullivan N, Cipollini G, Coia V, Samadelli M, Engstrand L, Linz B, Moritz RL, Grimm R, Krause J, Nebel A, Moodley Y, Rattei T, Zink A
    2016 - Science, 6269: 162-5

    Abstract: 

    The stomach bacterium Helicobacter pylori is one of the most prevalent human pathogens. It has dispersed globally with its human host, resulting in a distinct phylogeographic pattern that can be used to reconstruct both recent and ancient human migrations. The extant European population of H. pylori is known to be a hybrid between Asian and African bacteria, but there exist different hypotheses about when and where the hybridization took place, reflecting the complex demographic history of Europeans. Here, we present a 5300-year-old H. pylori genome from a European Copper Age glacier mummy. The "Iceman" H. pylori is a nearly pure representative of the bacterial population of Asian origin that existed in Europe before hybridization, suggesting that the African population arrived in Europe within the past few thousand years.

  • EffectiveDB-updates and novel features for a better annotation of bacterial secreted proteins and Type III, IV, VI secretion systems.

    Eichinger V, Nussbaumer T, Platzer A, Jehl MA, Arnold R, Rattei T
    2016 - Nucleic Acids Res., D669-74

    Abstract: 

    Protein secretion systems play a key role in the interaction of bacteria and hosts. EffectiveDB (http://effectivedb.org) contains pre-calculated predictions of bacterial secreted proteins and of intact secretion systems. Here we describe a major update of the database, which was previously featured in the NAR Database Issue. EffectiveDB bundles various tools to recognize Type III secretion signals, conserved binding sites of Type III chaperones, Type IV secretion peptides, eukaryotic-like domains and subcellular targeting signals in the host. Beyond the analysis of arbitrary protein sequence collections, the new release of EffectiveDB also provides a 'genome-mode', in which protein sequences from nearly complete genomes or metagenomic bins can be screened for the presence of three important secretion systems (Type III, IV, VI). EffectiveDB contains pre-calculated predictions for currently 1677 bacterial genomes from the EggNOG 4.0 database and for additional bacterial genomes from NCBI RefSeq. The new, user-friendly and informative web portal offers a submission tool for running the EffectiveDB prediction tools on user-provided data.

  • probeBase-an online resource for rRNA-targeted oligonucleotide probes and primers: new features 2016.

    Greuter D, Loy A, Horn M, Rattei T
    2016 - Nucleic Acids Res., D586-9

    Abstract: 

    probeBase http://www.probebase.net is a manually maintained and curated database of rRNA-targeted oligonucleotide probes and primers. Contextual information and multiple options for evaluating in silico hybridization performance against the most recent rRNA sequence databases are provided for each oligonucleotide entry, which makes probeBase an important and frequently used resource for microbiology research and diagnostics. Here we present a major update of probeBase, which was last featured in the NAR Database Issue 2007. This update describes a complete remodeling of the database architecture and environment to accommodate computationally efficient access. Improved search functions, sequence match tools and data output now extend the opportunities for finding suitable hierarchical probe sets that target an organism or taxon at different taxonomic levels. To facilitate the identification of complementary probe sets for organisms represented by short rRNA sequence reads generated by amplicon sequencing or metagenomic analysis with next generation sequencing technologies such as Illumina and IonTorrent, we introduce a novel tool that recovers surrogate near full-length rRNA sequences for short query sequences and finds matching oligonucleotides in probeBase.

  • eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences.

    Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, Jensen LJ, von Mering C, Bork P
    2016 - Nucleic Acids Res., D286-93

    Abstract: 

    eggNOG is a public resource that provides Orthologous Groups (OGs) of proteins at different taxonomic levels, each with integrated and summarized functional annotations. Developments since the latest public release include changes to the algorithm for creating OGs across taxonomic levels, making nested groups hierarchically consistent. This allows for a better propagation of functional terms across nested OGs and led to the novel annotation of 95 890 previously uncharacterized OGs, increasing overall annotation coverage from 67% to 72%. The functional annotations of OGs have been expanded to also provide Gene Ontology terms, KEGG pathways and SMART/Pfam domains for each group. Moreover, eggNOG now provides pairwise orthology relationships within OGs based on analysis of phylogenetic trees. We have also incorporated a framework for quickly mapping novel sequences to OGs based on precomputed HMM profiles. Finally, eggNOG version 4.5 incorporates a novel data set spanning 2605 viral OGs, covering 5228 proteins from 352 viral proteomes. All data are accessible for bulk downloading, as a web-service, and through a completely redesigned web interface. The new access points provide faster searches and a number of new browsing and visualization capabilities, facilitating the needs of both experts and less experienced users. eggNOG v4.5 is available at http://eggnog.embl.de.

Book chapters and other publications

No matching database entries were found.