• Our aim is to advance our understanding of biological systems,

    ranging from single species to multi-species systems and ecosystems,

    based on data from large-scale bioanalytical methods.

  • We develop, improve and apply

    computational methods

    for the interpretation of molecular information in biology.

  • We establish and analyse

    quantitative mathematical models.


  • CUBE on segway tour through Vienna


    CUBE took a day off on May 28 and toured on segways through Vienna. We started in the first district, visited the Prater and the second district. We stopped at the Augarten and then turned into the 9th district in ...

  • Happy birthday, Gabi!


    Today, Gabi Kaindl is celebrating her 60th birthday. Dear Gabi, we all congratulate and wish you all the best. Thanks for your great work and the continuous support in solving all the big and small CUBE issues every day... ...

  • CAMI paper published in Nature Methods


    The paper about the first round of the "Critical Assessment of Metagenome Interpretation" (CAMI) challenge was published in Nature Methods. The challenge was organized and run by an international team, including Dmitrij Turaev and Thomas Rattei from CUBE.

    That's not the ...

  • Harald Marx starts Computational Peptidomics Group at CUBE


    Dr. Harald Marx is a Bioinformatician by training. During his PhD in Bernhard Kuster's Lab at TU Munich he developed tools and statistical approaches for proteogenomics and structural genome annotation. As a PostDoc fellow in Joshua Coon's lab at the University of ...

Latest publications

Reef Invertebrate Viromics: Diversity, Host-Specificity & Functional Capacity.

Recent metagenomic analyses have revealed a high diversity of viruses in the pelagic ocean and uncovered clear habitat-specific viral distribution patterns. Conversely, similar insights into the composition, host-specificity and function of viruses associated with marine organisms have been limited by challenges associated with sampling and computational analysis. Here we performed targeted viromic analysis of six coral reef invertebrate species and their surrounding seawater to deliver taxonomic and functional profiles of viruses associated with reef organisms. Sponges and corals host species-specific viral assemblages with low sequence identity to known viral genomes. While core viral genes involved in capsid formation, tail structure and infection mechanisms were observed across all reef samples, auxiliary genes including those involved in herbicide resistance and viral pathogenesis pathways such as host immune suppression were differentially enriched in reef hosts. Utilising a novel OTU based assessment, we also show a prevalence of dsDNA viruses belonging to the Mimiviridae, Caudovirales and Phycodnaviridae in reef environments and further highlight the abundance of ssDNA viruses belonging to the Circoviridae, Parvoviridae, Bidnaviridae and Microviridae in reef invertebrates. These insights into coral reef viruses provide an important framework for future research into how viruses contribute to the health and evolution of reef organisms. This article is protected by copyright. All rights reserved.

Laffy PW, Wood-Charlson EM, Turaev D, Jutz S, Pascelli C, Botté ES, Bell SC, Peirce T, Weynberg KD, van Oppen MJH, Rattei T, Webster NS
2018 - Environ. Microbiol., in press

Great Cause-Small Effect: Undeclared Genetically Engineered Orange Petunias Harbor an Inefficient Dihydroflavonol 4-Reductase.

A recall campaign for commercial, orange flowering petunia varieties in spring 2017 caused economic losses worldwide. The orange varieties were identified as undeclared genetically engineered (GE)-plants, harboring a maize dihydroflavonol 4-reductase (), which was used in former scientific transgenic breeding attempts to enable formation of orange pelargonidin derivatives from the precursor dihydrokaempferol (DHK) in petunia. How and when the cDNA entered the commercial breeding process is unclear. We provide an in-depth analysis of three orange petunia varieties, released by breeders from three countries, with respect to their transgenic construct, transcriptomes, anthocyanin composition, and flavonoid metabolism at the level of selected enzymes and genes. The two possible sources of the cDNA in the undeclared GE-petunia can be discriminated by PCR. A special version of the gene, the type 2 allele, is present, which includes, at the 3'-end, an additional 144 bp segment from the non-viral transposable sequence, which does not add any functional advantage with respect to DFR activity. This unequivocally points at the first scientific GE-petunia from the 1980s as the source, which is further underpinned e.g., by the presence of specific restriction sites, parts of the untranslated sequences, and the same arrangement of the building blocks of the transformation plasmid used. Surprisingly, however, the GE-petunia cannot be distinguished from native red and blue varieties by their ability to convert DHK in common enzyme assays, as DHK is an inadequate substrate for both the petunia and maize DFR. Recombinant maize DFR underpins the low DHK acceptance, and, thus, the strikingly limited suitability of the protein for a transgenic approach for breeding pelargonidin-based flower color. The effect of single amino acid mutations on the substrate specificity of DFRs is demonstrated. Expression of the gene is generally lower than the petunia expression despite being under the control of the strong, constitutive p promoter. We show that a rare constellation in flavonoid metabolism-absence or strongly reduced activity of both flavonol synthase and B-ring hydroxylating enzymes-allows pelargonidin formation in the presence of DFRs with poor DHK acceptance.

Haselmair-Gosch C, Miosic S, Nitarska D, Roth BL, Walliser B, Paltram R, Lucaciu RC, Eidenberger L, Rattei T, Olbricht K, Stich K, Halbwirth H
2018 - Front Plant Sci, 149

Peatland Acidobacteria with a dissimilatory sulfur metabolism.

Sulfur-cycling microorganisms impact organic matter decomposition in wetlands and consequently greenhouse gas emissions from these globally relevant environments. However, their identities and physiological properties are largely unknown. By applying a functional metagenomics approach to an acidic peatland, we recovered draft genomes of seven novel Acidobacteria species with the potential for dissimilatory sulfite (dsrAB, dsrC, dsrD, dsrN, dsrT, dsrMKJOP) or sulfate respiration (sat, aprBA, qmoABC plus dsr genes). Surprisingly, the genomes also encoded DsrL, which so far was only found in sulfur-oxidizing microorganisms. Metatranscriptome analysis demonstrated expression of acidobacterial sulfur-metabolism genes in native peat soil and their upregulation in diverse anoxic microcosms. This indicated an active sulfate respiration pathway, which, however, might also operate in reverse for dissimilatory sulfur oxidation or disproportionation as proposed for the sulfur-oxidizing Desulfurivibrio alkaliphilus. Acidobacteria that only harbored genes for sulfite reduction additionally encoded enzymes that liberate sulfite from organosulfonates, which suggested organic sulfur compounds as complementary energy sources. Further metabolic potentials included polysaccharide hydrolysis and sugar utilization, aerobic respiration, several fermentative capabilities, and hydrogen oxidation. Our findings extend both, the known physiological and genetic properties of Acidobacteria and the known taxonomic diversity of microorganisms with a DsrAB-based sulfur metabolism, and highlight new fundamental niches for facultative anaerobic Acidobacteria in wetlands based on exploitation of inorganic and organic sulfur molecules for energy conservation.

Hausmann B, Pelikan C, Herbold CW, Köstlbacher S, Albertsen M, Eichorst SA, Glavina Del Rio T, Huemer M, Nielsen PH, Rattei T, Stingl U, Tringe SG, Trojan D, Wentrup C, Woebken D, Pester M, Loy A
2018 - ISME J, in press