Publications

The fulltext of publications might not be freely accessible but require subscription. Please request reprints at contact.cube@univie.ac.at.

Publications in peer reviewed journals

177 Publications found
  • Genome rearrangements drive evolution of ANK genes in Wolbachia

    Vostokova EV, Dranenko NO, Gelfand MS, Bochkareva OO
    2023 - in press

    Abstract: 

    Genus Wolbachia comprises endosymbionts infecting many arthropods and nematodes; it is a model for studying symbiosis as its members feature numerous, diverse mutualistic and parasitic adaptations to different hosts. In contrast to nematode-infecting Wolbachia, genomes of arthropod-infecting strains contain a high fraction of repetitive elements creating possibilities for multiple recombination events and causing genome rearrangements. The mechanisms and role of these features are still not fully understood. Transposons cover up to 18% of an arthropod-infecting Wolbachia genome and drive numerous genome rearrangements including inversions and segmental amplifications. ANK (ankyrin-repeat domain family) genes are also often found at the breakpoints of rearrangements, while less than 7% of them were found within locally collinear blocks (LCBs). We observed a strong correlation between the number of ANK genes and the genome size as well as significant overrepresentation of transposons adjacent to these genes. We also revealed numerous cases of integration of transposases to the ANK genes affecting the sequences and putative products of the latter. Our results uncover the role of mobile elements in the amplification and diversification of ANK genes. Evolution of arthropod-infecting Wolbachia was accompanied by diverse genome rearrangements driving the evolution of ANK genes important for bacteria-host interactions. This study demonstrates the effectiveness of our LCB-based approach to the Wolbachia genomics and provides a framework for understanding the impact of genome rearrangements on their rapid host adaptation.

  • Machine learning and phylogenetic analysis allow for predicting antibiotic resistance in M. tuberculosis.

    Yurtseven A, Buyanova S, Agrawal AA, Bochkareva OO, Kalinina OV
    2023 - BMC Microbiol, 23: 404

    Abstract: 

    Antimicrobial resistance (AMR) poses a significant global health threat, and an accurate prediction of bacterial resistance patterns is critical for effective treatment and control strategies. In recent years, machine learning (ML) approaches have emerged as powerful tools for analyzing large-scale bacterial AMR data. However, ML methods often ignore evolutionary relationships among bacterial strains, which can greatly impact performance of the ML methods, especially if resistance-associated features are attempted to be detected. Genome-wide association studies (GWAS) methods like linear mixed models accounts for the evolutionary relationships in bacteria, but they uncover only highly significant variants which have already been reported in literature.
    In this work, we introduce a novel phylogeny-related parallelism score (PRPS), which measures whether a certain feature is correlated with the population structure of a set of samples. We demonstrate that PRPS can be used, in combination with SVM- and random forest-based models, to reduce the number of features in the analysis, while simultaneously increasing models' performance. We applied our pipeline to publicly available AMR data from PATRIC database for Mycobacterium tuberculosis against six common antibiotics.
    Using our pipeline, we re-discovered known resistance-associated mutations as well as new candidate mutations which can be related to resistance and not previously reported in the literature. We demonstrated that taking into account phylogenetic relationships not only improves the model performance, but also yields more biologically relevant predicted most contributing resistance markers.

  • The Fish Pathogen "Candidatus Clavichlamydia salmonicola"-A Missing Link in the Evolution of Chlamydial Pathogens of Humans.

    Collingro A, Köstlbacher S, Siegl A, Toenshoff ER, Schulz F, Mitchell SO, Weinmaier T, Rattei T, Colquhoun DJ, Horn M
    2023 - Genome Biol Evol, 8: in press

    Abstract: 

    Chlamydiae like Chlamydia trachomatis and Chlamydia psittaci are well-known human and animal pathogens. Yet, the chlamydiae are a much larger group of evolutionary ancient obligate intracellular bacteria that includes predominantly symbionts of protists and diverse animals. This makes them ideal model organisms to study evolutionary transitions from symbionts in microbial eukaryotes to pathogens of humans. To this end, comparative genome analysis has served as an important tool. Genome sequence data for many chlamydial lineages are, however, still lacking, hampering our understanding of their evolutionary history. Here, we determined the first high-quality draft genome sequence of the fish pathogen "Candidatus Clavichlamydia salmonicola", representing a separate genus within the human and animal pathogenic Chlamydiaceae. The "Ca. Clavichlamydia salmonicola" genome harbors genes that so far have been exclusively found in Chlamydia species suggesting that basic mechanisms important for the interaction with chordate hosts have evolved stepwise in the history of chlamydiae. Thus, the genome sequence of "Ca. Clavichlamydia salmonicola" allows to constrain candidate genes to further understand the evolution of chlamydial virulence mechanisms required to infect mammals.

  • Genome Dynamics and Temperature Adaptation During Experimental Evolution of Obligate Intracellular Bacteria.

    Herrera P, Schuster L, Zojer M, Na H, Schwarz J, Wascher F, Kempinger T, Regner A, Rattei T, Horn M
    2023 - Genome Biol Evol, 8: in press

    Abstract: 

    Evolution experiments with free-living microbes have radically improved our understanding of genome evolution and how microorganisms adapt. Yet there is a paucity of such research focusing on strictly host-associated bacteria, even though they are widespread in nature. Here, we used the Acanthamoeba symbiont Protochlamydia amoebophila, a distant relative of the human pathogen Chlamydia trachomatis and representative of a large group of protist-associated environmental chlamydiae, as a model to study how obligate intracellular symbionts evolve and adapt to elevated temperature, a prerequisite for the pivotal evolutionary leap from protist to endothermic animal hosts. We established 12 replicate populations under two temperatures (20 °C, 30 °C) for 510 bacterial generations (38 months). We then used infectivity assays and pooled whole-genome resequencing to identify any evolved phenotypes and the molecular basis of adaptation in these bacteria. We observed an overall reduction in infectivity of the symbionts evolved at 30 °C, and we identified numerous nonsynonymous mutations and small indels in these symbiont populations, with several variants persisting throughout multiple time points and reaching high frequencies. This suggests that many mutations may have been beneficial and played an adaptive role. Mutated genes within the same temperature regime were more similar than those between temperature regimes. Our results provide insights into the molecular evolution of intracellular bacteria under the constraints of strict host dependance and highly structured populations and suggest that for chlamydial symbionts of protists, temperature adaptation was facilitated through attenuation of symbiont infectivity as a tradeoff to reduce host cell burden.

  • A predicted CRISPR-mediated symbiosis between uncultivated archaea.

    Esser SP, Rahlff J, Zhao W, Predl M, Plewka J, Sures K, Wimmer F, Lee J, Adam PS, McGonigle J, Turzynski V, Banas I, Schwank K, Krupovic M, Bornemann TLV, Figueroa-Gonzalez PA, Jarett J, Rattei T, Amano Y, Blaby IK, Cheng JF, Brazelton WJ, Beisel CL, Woyke T, Zhang Y, Probst AJ
    2023 - Nat Microbiol, 9: 1619-1633

    Abstract: 

    CRISPR-Cas systems defend prokaryotic cells from invasive DNA of viruses, plasmids and other mobile genetic elements. Here, we show using metagenomics, metatranscriptomics and single-cell genomics that CRISPR systems of widespread, uncultivated archaea can also target chromosomal DNA of archaeal episymbionts of the DPANN superphylum. Using meta-omics datasets from Crystal Geyser and Horonobe Underground Research Laboratory, we find that CRISPR spacers of the hosts Candidatus Altiarchaeum crystalense and Ca. A. horonobense, respectively, match putative essential genes in their episymbionts' genomes of the genus Ca. Huberiarchaeum and that some of these spacers are expressed in situ. Metabolic interaction modelling also reveals complementation between host-episymbiont systems, on the basis of which we propose that episymbionts are either parasitic or mutualistic depending on the genotype of the host. By expanding our analysis to 7,012 archaeal genomes, we suggest that CRISPR-Cas targeting of genomes associated with symbiotic archaea evolved independently in various archaeal lineages.

  • Food systems microbiome-related educational needs.

    Olmo R, Wetzels SU, Berg G, Cocolin L, Hartmann M, Hugas M, Kostic T, Rattei T, Ruthsatz M, Rybakova D, Sessitsch A, Shortt C, Timmis K, Selberherr E, Wagner M
    2023 - Microb Biotechnol, 7: 1412-1422

    Abstract: 

    Within the European-funded Coordination and Support Action MicrobiomeSupport (https://www.microbiomesupport.eu/), the Workshop 'Education in Food Systems Microbiome Related Sciences: Needs for Universities, Industry and Public Health Systems' brought together over 70 researchers, public health and industry partners from all over the world to work on elaborating microbiome-related educational needs in food systems. This publication provides a summary of discussions held during and after the workshop and the resulting recommendations.

  • Antiviral immune response reveals host-specific virus infections in natural ant populations.

    Viljakainen L, Fürst MA, Grasse AV, Jurvansuu J, Oh J, Tolonen L, Eder T, Rattei T, Cremer S
    2023 - Front Microbiol, 1119002

    Abstract: 

    Hosts can carry many viruses in their bodies, but not all of them cause disease. We studied ants as a social host to determine both their overall viral repertoire and the subset of actively infecting viruses across natural populations of three subfamilies: the Argentine ant (, Dolichoderinae), the invasive garden ant (, Formicinae) and the red ant (, Myrmicinae). We used a dual sequencing strategy to reconstruct complete virus genomes by RNA-seq and to simultaneously determine the small interfering RNAs (siRNAs) by small RNA sequencing (sRNA-seq), which constitute the host antiviral RNAi immune response. This approach led to the discovery of 41 novel viruses in ants and revealed a host ant-specific RNAi response (21 vs. 22 nt siRNAs) in the different ant species. The efficiency of the RNAi response (sRNA/RNA read count ratio) depended on the virus and the respective ant species, but not its population. Overall, we found the highest virus abundance and diversity per population in , followed by and . Argentine ants also shared a high proportion of viruses between populations, whilst overlap was nearly absent in . Only one of the 59 viruses was found to infect two of the ant species as hosts, revealing high host-specificity in active infections. In contrast, six viruses actively infected one ant species, but were found as contaminants only in the others. Disentangling spillover of disease-causing infection from non-infecting contamination across species is providing relevant information for disease ecology and ecosystem management.

  • Metagenomic Antimicrobial Susceptibility Testing from Simulated Native Patient Samples.

    Lüftinger L, Májek P, Rattei T, Beisken S
    2023 - Antibiotics (Basel), 2: in press

    Abstract: 

    Genomic antimicrobial susceptibility testing (AST) has been shown to be accurate for many pathogens and antimicrobials. However, these methods have not been systematically evaluated for clinical metagenomic data. We investigate the performance of in-silico AST from clinical metagenomes (MG-AST). Using isolate sequencing data from a multi-center study on antimicrobial resistance (AMR) as well as shotgun-sequenced septic urine samples, we simulate over 2000 complicated urinary tract infection (cUTI) metagenomes with known resistance phenotype to 5 antimicrobials. Applying rule-based and machine learning-based genomic AST classifiers, we explore the impact of sequencing depth and technology, metagenome complexity, and bioinformatics processing approaches on AST accuracy. By using an optimized metagenomics assembly and binning workflow, MG-AST achieved balanced accuracy within 5.1% of isolate-derived genomic AST. For poly-microbial infections, taxonomic sample complexity and relatedness of taxa in the sample is a key factor influencing metagenomic binning and downstream MG-AST accuracy. We show that the reassignment of putative plasmid contigs by their predicted host range and investigation of whole resistome capabilities improved MG-AST performance on poly-microbial samples. We further demonstrate that machine learning-based methods enable MG-AST with superior accuracy compared to rule-based approaches on simulated native patient samples.

  • Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4.

    Blanco-Míguez A, Beghini F, Cumbo F, McIver LJ, Thompson KN, Zolfo M, Manghi P, Dubois L, Huang KD, Thomas AM, Nickols WA, Piccinno G, Piperni E, Punčochář M, Valles-Colomer M, Tett A, Giordano F, Davies R, Wolf J, Berry SE, Spector TD, Franzosa EA, Pasolli E, Asnicar F, Huttenhower C, Segata N
    2023 - Nat Biotechnol, in press

    Abstract: 

    Metagenomic assembly enables new organism discovery from microbial communities, but it can only capture few abundant organisms from most metagenomes. Here we present MetaPhlAn 4, which integrates information from metagenome assemblies and microbial isolate genomes for more comprehensive metagenomic taxonomic profiling. From a curated collection of 1.01 M prokaryotic reference and metagenome-assembled genomes, we define unique marker genes for 26,970 species-level genome bins, 4,992 of them taxonomically unidentified at the species level. MetaPhlAn 4 explains ~20% more reads in most international human gut microbiomes and >40% in less-characterized environments such as the rumen microbiome and proves more accurate than available alternatives on synthetic evaluations while also reliably quantifying organisms with no cultured isolates. Application of the method to >24,500 metagenomes highlights previously undetected species to be strong biomarkers for host conditions and lifestyles in human and mouse microbiomes and shows that even previously uncharacterized species can be genetically profiled at the resolution of single microbial strains.

  • One to host them all: genomics of the diverse bacterial endosymbionts of the spider .

    Halter T, Köstlbacher S, Rattei T, Hendrickx F, Manzano-Marín A, Horn M
    2023 - Microb Genom, 2: in press

    Abstract: 

    Bacterial endosymbionts of the groups , and are well known for their diverse effects on their arthropod hosts, ranging from mutualistic relationships to reproductive phenotypes. Here, we analysed a unique system in which the dwarf spider is co-infected with up to five different endosymbionts affiliated with , ' Tisiphia' (formerly Torix group ), and . Using short-read genome sequencing data, we show that the endosymbionts are heterogeneously distributed among populations and are frequently found co-infecting spider individuals. To study this intricate host-endosymbiont system on a genome-resolved level, we used long-read sequencing to reconstruct closed genomes of the , '. Tisiphia' and endosymbionts. We provide insights into the ecology and evolution of the endosymbionts and shed light on the interactions with their spider host. We detected high quantities of transposable elements in all endosymbiont genomes and provide evidence that ancestors of the , '. Tisiphia' and endosymbionts have co-infected the same hosts in the past. Our findings contribute to broadening our knowledge about endosymbionts infecting one of the largest animal phyla on Earth and show the usefulness of transposable elements as an evolutionary 'contact-tracing' tool.

  • Secondary Metabolite Production Potential in a Microbiome of the Freshwater Sponge Spongilla lacustris.

    Graffius S, Garzón JFG, Zehl M, Pjevac P, Kirkegaard R, Flieder M, Loy A, Rattei T, Ostrovsky A, Zotchev SB
    2023 - Microbiol Spectr, e0435322

    Abstract: 

    Marine and freshwater sponges harbor diverse communities of bacteria with vast potential to produce secondary metabolites that may play an important role in protecting the host from predators and infections. In this work, we initially used cultivation and metagenomics to investigate the microbial community of the freshwater sponge Spongilla lacustris collected in an Austrian lake. Representatives of 41 bacterial genera were isolated from the sponge sample and classified according to their 16S rRNA gene sequences. The genomes of 33 representative isolates and the 20 recovered metagenome-assembled genomes (MAGs) contained in total 306 secondary metabolite biosynthesis gene clusters (BGCs). Comparative 16S rRNA gene and genome analyses showed very little taxon overlap between the recovered isolates and the sponge community as revealed by cultivation-independent methods. Both culture-independent and -dependent analyses suggested high biosynthetic potential of the S. lacustris microbiome, which was confirmed experimentally even at the subspecies level for two isolates. To our knowledge, this is the most thorough description of the secondary metabolite production potential of a freshwater sponge microbiome to date. A large body of research is dedicated to marine sponges, filter-feeding animals harboring rich bacterial microbiomes believed to play an important role in protecting the host from predators and infections. Freshwater sponges have received so far much less attention with respect to their microbiomes, members of which may produce bioactive secondary metabolites with potential to be developed into drugs to treat a variety of diseases. In this work, we investigated the potential of bacteria associated with the freshwater sponge to biosynthesize diverse secondary metabolites. Using culture-dependent and -independent methods, we discovered over 300 biosynthetic gene clusters in sponge-associated bacteria and proved production of several compounds by selected isolates using genome mining. Our results illustrate the importance of a complex approach when dealing with microbiomes of multicellular organisms that may contain producers of medically important secondary metabolites.

  • Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies.

    Kennedy KM, de Goffau MC, Perez-Muñoz ME, Arrieta MC, Bäckhed F, Bork P, Braun T, Bushman FD, Dore J, de Vos WM, Earl AM, Eisen JA, Elovitz MA, Ganal-Vonarburg SC, Gänzle MG, Garrett WS, Hall LJ, Hornef MW, Huttenhower C, Konnikova L, Lebeer S, Macpherson AJ, Massey RC, McHardy AC, Koren O, Lawley TD, Ley RE, O'Mahony L, O'Toole PW, Pamer EG, Parkhill J, Raes J, Rattei T, Salonen A, Segal E, Segata N, Shanahan F, Sloboda DM, Smith GCS, Sokol H, Spector TD, Surette MG, Tannock GW, Walker AW, Yassour M, Walter J
    2023 - Nature, 7945: 639-649

    Abstract: 

    Whether the human fetus and the prenatal intrauterine environment (amniotic fluid and placenta) are stably colonized by microbial communities in a healthy pregnancy remains a subject of debate. Here we evaluate recent studies that characterized microbial populations in human fetuses from the perspectives of reproductive biology, microbial ecology, bioinformatics, immunology, clinical microbiology and gnotobiology, and assess possible mechanisms by which the fetus might interact with microorganisms. Our analysis indicates that the detected microbial signals are likely the result of contamination during the clinical procedures to obtain fetal samples or during DNA extraction and DNA sequencing. Furthermore, the existence of live and replicating microbial populations in healthy fetal tissues is not compatible with fundamental concepts of immunology, clinical microbiology and the derivation of germ-free mammals. These conclusions are important to our understanding of human immune development and illustrate common pitfalls in the microbial analyses of many other low-biomass environments. The pursuit of a fetal microbiome serves as a cautionary example of the challenges of sequence-based microbiome studies when biomass is low or absent, and emphasizes the need for a trans-disciplinary approach that goes beyond contamination controls by also incorporating biological, ecological and mechanistic concepts.

  • The person-to-person transmission landscape of the gut and oral microbiomes.

    Valles-Colomer M, Blanco-Míguez A, Manghi P, Asnicar F, Dubois L, Golzato D, Armanini F, Cumbo F, Huang KD, Manara S, Masetti G, Pinto F, Piperni E, Punčochář M, Ricci L, Zolfo M, Farrant O, Goncalves A, Selma-Royo M, Binetti AG, Becerra JE, Han B, Lusingu J, Amuasi J, Amoroso L, Visconti A, Steves CM, Falchi M, Filosi M, Tett A, Last A, Xu Q, Qin N, Qin H, May J, Eibach D, Corrias MV, Ponzoni M, Pasolli E, Spector TD, Domenici E, Collado MC, Segata N
    2023 - Nature, 7946: 125-135

    Abstract: 

    The human microbiome is an integral component of the human body and a co-determinant of several health conditions. However, the extent to which interpersonal relations shape the individual genetic makeup of the microbiome and its transmission within and across populations remains largely unknown. Here, capitalizing on more than 9,700 human metagenomes and computational strain-level profiling, we detected extensive bacterial strain sharing across individuals (more than 10 million instances) with distinct mother-to-infant, intra-household and intra-population transmission patterns. Mother-to-infant gut microbiome transmission was considerable and stable during infancy (around 50% of the same strains among shared species (strain-sharing rate)) and remained detectable at older ages. By contrast, the transmission of the oral microbiome occurred largely horizontally and was enhanced by the duration of cohabitation. There was substantial strain sharing among cohabiting individuals, with 12% and 32% median strain-sharing rates for the gut and oral microbiomes, and time since cohabitation affected strain sharing more than age or genetics did. Bacterial strain sharing additionally recapitulated host population structures better than species-level profiles did. Finally, distinct taxa appeared as efficient spreaders across transmission modes and were associated with different predicted bacterial phenotypes linked with out-of-host survival capabilities. The extent of microorganism transmission that we describe underscores its relevance in human microbiome studies, especially those on non-infectious, microbiome-associated diseases.

  • Thermal acclimation of methanotrophs from the genus Methylobacter.

    Tveit AT, Söllinger A, Rainer EM, Didriksen A, Hestnes AG, Motleleng L, Hellinger HJ, Rattei T, Svenning MM
    2023 - ISME J, 4: 502-513

    Abstract: 

    Methanotrophs oxidize most of the methane (CH) produced in natural and anthropogenic ecosystems. Often living close to soil surfaces, these microorganisms must frequently adjust to temperature change. While many environmental studies have addressed temperature effects on CH oxidation and methanotrophic communities, there is little knowledge about the physiological adjustments that underlie these effects. We have studied thermal acclimation in Methylobacter, a widespread, abundant, and environmentally important methanotrophic genus. Comparisons of growth and CH oxidation kinetics at different temperatures in three members of the genus demonstrate that temperature has a strong influence on how much CH is consumed to support growth at different CH concentrations. However, the temperature effect varies considerably between species, suggesting that how a methanotrophic community is composed influences the temperature effect on CH uptake. To understand thermal acclimation mechanisms widely we carried out a transcriptomics experiment with Methylobacter tundripaludum SV96. We observed, at different temperatures, how varying abundances of transcripts for glycogen and protein biosynthesis relate to cellular glycogen and ribosome concentrations. Our data also demonstrated transcriptional adjustment of CH oxidation, oxidative phosphorylation, membrane fatty acid saturation, cell wall composition, and exopolysaccharides between temperatures. In addition, we observed differences in M. tundripaludum SV96 cell sizes at different temperatures. We conclude that thermal acclimation in Methylobacter results from transcriptional adjustment of central metabolism, protein biosynthesis, cell walls and storage. Acclimation leads to large shifts in CH consumption and growth efficiency, but with major differences between species. Thus, our study demonstrates that physiological adjustments to temperature change can substantially influence environmental CH uptake rates and that consideration of methanotroph physiology might be vital for accurate predictions of warming effects on CH emissions.

  • Cytoscape stringApp 2.0: Analysis and Visualization of Heterogeneous Biological Networks.

    Doncheva NT, Morris JH, Holze H, Kirsch R, Nastou KC, Cuesta-Astroz Y, Rattei T, Szklarczyk D, von Mering C, Jensen LJ
    2023 - J Proteome Res, 2: 637-646

    Abstract: 

    Biological networks are often used to represent complex biological systems, which can contain several types of entities. Analysis and visualization of such networks is supported by the Cytoscape software tool and its many apps. While earlier versions of stringApp focused on providing intraspecies protein-protein interactions from the STRING database, the new stringApp 2.0 greatly improves the support for heterogeneous networks. Here, we highlight new functionality that makes it possible to create networks that contain proteins and interactions from STRING as well as other biological entities and associations from other sources. We exemplify this by complementing a published SARS-CoV-2 interactome with interactions from STRING. We have also extended stringApp with new data and query functionality for protein-protein interactions between eukaryotic parasites and their hosts. We show how this can be used to retrieve and visualize a cross-species network for a malaria parasite, its host, and its vector. Finally, the latest stringApp version has an improved user interface, allows retrieval of both functional associations and physical interactions, and supports group-wise enrichment analysis of different parts of a network to aid biological interpretation. stringApp is freely available at https://apps.cytoscape.org/apps/stringapp.

  • eggNOG 6.0: enabling comparative genomics across 12 535 organisms.

    Hernández-Plaza A, Szklarczyk D, Botas J, Cantalapiedra CP, Giner-Lamia J, Mende DR, Kirsch R, Rattei T, Letunic I, Jensen LJ, Bork P, von Mering C, Huerta-Cepas J
    2023 - Nucleic Acids Res, 1: D389-D394

    Abstract: 

    The eggNOG (evolutionary gene genealogy Non-supervised Orthologous Groups) database is a bioinformatics resource providing orthology data and comprehensive functional information for organisms from all domains of life. Here, we present a major update of the database and website (version 6.0), which increases the number of covered organisms to 12 535 reference species, expands functional annotations, and implements new functionality. In total, eggNOG 6.0 provides a hierarchy of over 17M orthologous groups (OGs) computed at 1601 taxonomic levels, spanning 10 756 bacterial, 457 archaeal and 1322 eukaryotic organisms. OGs have been thoroughly annotated using recent knowledge from functional databases, including KEGG, Gene Ontology, UniProtKB, BiGG, CAZy, CARD, PFAM and SMART. eggNOG also offers phylogenetic trees for all OGs, maximising utility and versatility for end users while allowing researchers to investigate the evolutionary history of speciation and duplication events as well as the phylogenetic distribution of functional terms within each OG. Furthermore, the eggNOG 6.0 website contains new functionality to mine orthology and functional data with ease, including the possibility of generating phylogenetic profiles for multiple OGs across species or identifying single-copy OGs at custom taxonomic levels. eggNOG 6.0 is available at http://eggnog6.embl.de.

  • Targeted Metabolomics and High-Throughput RNA Sequencing-Based Transcriptomics Reveal Massive Changes in the Streptomyces venezuelae NRRL B-65442 Metabolism Caused by Ethanol Shock.

    Sekurova ON, Zehl M, Predl M, Hunyadi P, Rattei T, Zotchev SB
    2022 - Microbiol Spectr, 6: e0367222

    Abstract: 

    The species Streptomyces venezuelae is represented by several distinct strains with variable abilities to biosynthesize structurally diverse secondary metabolites. In this work, we examined the effect of ethanol shock on the transcriptome and metabolome of Streptomyces venezuelae NRRL B-65442 using high-throughput RNA sequencing (RNA-seq) and high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS). Ethanol shock caused massive changes in the gene expression profile, differentially affecting genes for secondary metabolite biosynthesis and central metabolic pathways. Most of the data from the transcriptome analysis correlated well with the metabolome changes, including the overproduction of jadomycin congeners and a downshift in the production of desferrioxamines, legonoxamine, foroxymithin, and a small cryptic ribosomally synthesized peptide. Some of the metabolome changes, such as the overproduction of chloramphenicol, could not be explained by overexpression of the cognate biosynthetic genes but correlated with the expression profiles of genes for precursor biosynthesis. Changes in the transcriptome were also observed for several genes known to play a role in stress response in other bacteria and included at least 10 extracytoplasmic function σ factors. This study provides important new insights into the stress response in antibiotic-producing bacteria and will help to understand the complex mechanisms behind the environmental factor-induced regulation of secondary metabolite biosynthesis. spp. are filamentous Gram-positive bacteria known as versatile producers of secondary metabolites, of which some have been developed into human medicines against infections and cancer. The genomes of these bacteria harbor dozens of gene clusters governing the biosynthesis of secondary metabolites (BGCs), of which most are not expressed under laboratory conditions. Detailed knowledge of the complex regulation of BGC expression is still lacking, although certain growth conditions are known to trigger the production of previously undetected secondary metabolites. In this work, we investigated the effect of ethanol shock on the production of secondary metabolites by Streptomyces venezuelae and correlated these findings with the expression of cognate BGCs and primary metabolic pathways involved in the generation of cofactors and precursors. The findings of this study set the stage for the rational manipulation of bacterial genomes aimed at enhanced production of industrially important bioactive natural products.

  • A time-resolved multi-omics atlas of Acanthamoeba castellanii encystment.

    Bernard C, Locard-Paulet M, Noël C, Duchateau M, Giai Gianetto Q, Moumen B, Rattei T, Hechard Y, Jensen LJ, Matondo M, Samba-Louaka A
    2022 - Nat Commun, 1: 4104

    Abstract: 

    Encystment is a common stress response of most protists, including free-living amoebae. Cyst formation protects the amoebae from eradication and can increase virulence of the bacteria they harbor. Here, we mapped the global molecular changes that occur in the facultatively pathogenic amoeba Acanthamoeba castellanii during the early steps of the poorly understood process of encystment. By performing transcriptomic, proteomic, and phosphoproteomic experiments during encystment, we identified more than 150,000 previously undescribed transcripts and thousands of protein sequences absent from the reference genome. These results provide molecular details to the regulation of expected biological processes, such as cell proliferation shutdown, and reveal new insights such as a rapid phospho-regulation of sites involved in cytoskeleton remodeling and translation regulation. This work constitutes the first time-resolved molecular atlas of an encysting organism and a useful resource for further investigation of amoebae encystment to allow for a better control of pathogenic amoebae.

  • Genome-Wide Mutation Scoring for Machine-Learning-Based Antimicrobial Resistance Prediction.

    Májek P, Lüftinger L, Beisken S, Rattei T, Materna A
    2021 - Int J Mol Sci, 23: in press

    Abstract: 

    The prediction of antimicrobial resistance (AMR) based on genomic information can improve patient outcomes. Genetic mechanisms have been shown to explain AMR with accuracies in line with standard microbiology laboratory testing. To translate genetic mechanisms into phenotypic AMR, machine learning has been successfully applied. AMR machine learning models typically use nucleotide k-mer counts to represent genomic sequences. While k-mer representation efficiently captures sequence variation, it also results in high-dimensional and sparse data. With limited training data available, achieving acceptable model performance or model interpretability is challenging. In this study, we explore the utility of feature engineering with several biologically relevant signals. We propose to predict the functional impact of observed mutations with PROVEAN to use the predicted impact as a new feature for each protein in an organism's proteome. The addition of the new features was tested on a total of 19,521 isolates across nine clinically relevant pathogens and 30 different antibiotics. The new features significantly improved the predictive performance of trained AMR models for , , and . The balanced accuracy of the respective models of those three pathogens improved by 6.0% on average.

  • Hallstatt miners consumed blue cheese and beer during the Iron Age and retained a non-Westernized gut microbiome until the Baroque period.

    Maixner F, Sarhan MS, Huang KD, Tett A, Schoenafinger A, Zingale S, Blanco-Míguez A, Manghi P, Cemper-Kiesslich J, Rosendahl W, Kusebauch U, Morrone SR, Hoopmann MR, Rota-Stabelli O, Rattei T, Moritz RL, Oeggl K, Segata N, Zink A, Reschreiter H, Kowarik K
    2021 - Curr Biol, 23: 5149-5162.e6

    Abstract: 

    We subjected human paleofeces dating from the Bronze Age to the Baroque period (18 century AD) to in-depth microscopic, metagenomic, and proteomic analyses. The paleofeces were preserved in the underground salt mines of the UNESCO World Heritage site of Hallstatt in Austria. This allowed us to reconstruct the diet of the former population and gain insights into their ancient gut microbiome composition. Our dietary survey identified bran and glumes of different cereals as some of the most prevalent plant fragments. This highly fibrous, carbohydrate-rich diet was supplemented with proteins from broad beans and occasionally with fruits, nuts, or animal food products. Due to these traditional dietary habits, all ancient miners up to the Baroque period have gut microbiome structures akin to modern non-Westernized individuals whose diets are also mainly composed of unprocessed foods and fresh fruits and vegetables. This may indicate a shift in the gut community composition of modern Westernized populations due to quite recent dietary and lifestyle changes. When we extended our microbial survey to fungi present in the paleofeces, in one of the Iron Age samples, we observed a high abundance of Penicillium roqueforti and Saccharomyces cerevisiae DNA. Genome-wide analysis indicates that both fungi were involved in food fermentation and provides the first molecular evidence for blue cheese and beer consumption in Iron Age Europe.

  • Predictive Antibiotic Susceptibility Testing by Next-Generation Sequencing for Periprosthetic Joint Infections: Potential and Limitations.

    Lüftinger L, Ferreira I, Frank BJH, Beisken S, Weinberger J, von Haeseler A, Rattei T, Hofstaetter JG, Posch AE, Materna A
    2021 - Biomedicines, 8: in press

    Abstract: 

    Joint replacement surgeries are one of the most frequent medical interventions globally. Infections of prosthetic joints are a major health challenge and typically require prolonged or even indefinite antibiotic treatment. As multidrug-resistant pathogens continue to rise globally, novel diagnostics are critical to ensure appropriate treatment and help with prosthetic joint infections (PJI) management. To this end, recent studies have shown the potential of molecular methods such as next-generation sequencing to complement established phenotypic, culture-based methods. Together with advanced bioinformatics approaches, next-generation sequencing can provide comprehensive information on pathogen identity as well as antimicrobial susceptibility, potentially enabling rapid diagnosis and targeted therapy of PJIs. In this review, we summarize current developments in next generation sequencing based predictive antibiotic susceptibility testing and discuss potential and limitations for common PJI pathogens.

  • Genomic insights into diverse bacterial taxa that degrade extracellular DNA in marine sediments.

    Wasmund K, Pelikan C, Schintlmeister A, Wagner M, Watzka M, Richter A, Bhatnagar S, Noel A, Hubert CRJ, Rattei T, Hofmann T, Hausmann B, Herbold CW, Loy A
    2021 - Nat Microbiol, 7: 885-898

    Abstract: 

    Extracellular DNA is a major macromolecule in global element cycles, and is a particularly crucial phosphorus, nitrogen and carbon source for microorganisms in the seafloor. Nevertheless, the identities, ecophysiology and genetic features of DNA-foraging microorganisms in marine sediments are largely unknown. Here, we combined microcosm experiments, DNA stable isotope probing (SIP), single-cell SIP using nano-scale secondary isotope mass spectrometry (NanoSIMS) and genome-centric metagenomics to study microbial catabolism of DNA and its subcomponents in marine sediments. C-DNA added to sediment microcosms was largely degraded within 10 d and mineralized to CO. SIP probing of DNA revealed diverse 'Candidatus Izemoplasma', Lutibacter, Shewanella and Fusibacteraceae incorporated DNA-derived C-carbon. NanoSIMS confirmed incorporation of C into individual bacterial cells of Fusibacteraceae sorted from microcosms. Genomes of the C-labelled taxa all encoded enzymatic repertoires for catabolism of DNA or subcomponents of DNA. Comparative genomics indicated that diverse 'Candidatus Izemoplasmatales' (former Tenericutes) are exceptional because they encode multiple (up to five) predicted extracellular nucleases and are probably specialized DNA-degraders. Analyses of additional sediment metagenomes revealed extracellular nuclease genes are prevalent among Bacteroidota at diverse sites. Together, our results reveal the identities and functional properties of microorganisms that may contribute to the key ecosystem function of degrading and recycling DNA in the seabed.

  • Prevotella diversity, niches and interactions with the human host.

    Tett A, Pasolli E, Masetti G, Ercolini D, Segata N
    2021 - Nat Rev Microbiol, 9: 585-599

    Abstract: 

    The genus Prevotella includes more than 50 characterized species that occur in varied natural habitats, although most Prevotella spp. are associated with humans. In the human microbiome, Prevotella spp. are highly abundant in various body sites, where they are key players in the balance between health and disease. Host factors related to diet, lifestyle and geography are fundamental in affecting the diversity and prevalence of Prevotella species and strains in the human microbiome. These factors, along with the ecological relationship of Prevotella with other members of the microbiome, likely determine the extent of the contribution of Prevotella to human metabolism and health. Here we review the diversity, prevalence and potential connection of Prevotella spp. in the human host, highlighting how genomic methods and analysis have improved and should further help in framing their ecological role. We also provide suggestions for future research to improve understanding of the possible functions of Prevotella spp. and the effects of the Western lifestyle and diet on the host-Prevotella symbiotic relationship in the context of maintaining human health.

  • Novel taxa of Acidobacteriota implicated in seafloor sulfur cycling.

    Flieder M, Buongiorno J, Herbold CW, Hausmann B, Rattei T, Lloyd KG, Loy A, Wasmund K
    2021 - ISME J, 11: 3159-3180

    Abstract: 

    Acidobacteriota are widespread and often abundant in marine sediments, yet their metabolic and ecological properties are poorly understood. Here, we examined metabolisms and distributions of Acidobacteriota in marine sediments of Svalbard by functional predictions from metagenome-assembled genomes (MAGs), amplicon sequencing of 16S rRNA and dissimilatory sulfite reductase (dsrB) genes and transcripts, and gene expression analyses of tetrathionate-amended microcosms. Acidobacteriota were the second most abundant dsrB-harboring (averaging 13%) phylum after Desulfobacterota in Svalbard sediments, and represented 4% of dsrB transcripts on average. Meta-analysis of dsrAB datasets also showed Acidobacteriota dsrAB sequences are prominent in marine sediments worldwide, averaging 15% of all sequences analysed, and represent most of the previously unclassified dsrAB in marine sediments. We propose two new Acidobacteriota genera, Candidatus Sulfomarinibacter (class Thermoanaerobaculia, "subdivision 23") and Ca. Polarisedimenticola ("subdivision 22"), with distinct genetic properties that may explain their distributions in biogeochemically distinct sediments. Ca. Sulfomarinibacter encode flexible respiratory routes, with potential for oxygen, nitrous oxide, metal-oxide, tetrathionate, sulfur and sulfite/sulfate respiration, and possibly sulfur disproportionation. Potential nutrients and energy include cellulose, proteins, cyanophycin, hydrogen, and acetate. A Ca. Polarisedimenticola MAG encodes various enzymes to degrade proteins, and to reduce oxygen, nitrate, sulfur/polysulfide and metal-oxides. 16S rRNA gene and transcript profiling of Svalbard sediments showed Ca. Sulfomarinibacter members were relatively abundant and transcriptionally active in sulfidic fjord sediments, while Ca. Polarisedimenticola members were more relatively abundant in metal-rich fjord sediments. Overall, we reveal various physiological features of uncultured marine Acidobacteriota that indicate fundamental roles in seafloor biogeochemical cycling.

  • Tamock: simulation of habitat-specific benchmark data in metagenomics.

    Gerner SM, Graf AB, Rattei T
    2021 - BMC Bioinformatics, 1: 227

    Abstract: 

    Simulated metagenomic reads are widely used to benchmark software and workflows for metagenome interpretation. The results of metagenomic benchmarks depend on the assumptions about their underlying ecosystems. Conclusions from benchmark studies are therefore limited to the ecosystems they mimic. Ideally, simulations are therefore based on genomes, which resemble particular metagenomic communities realistically.
    We developed Tamock to facilitate the realistic simulation of metagenomic reads according to a metagenomic community, based on real sequence data. Benchmarks samples can be created from all genomes and taxonomic domains present in NCBI RefSeq. Tamock automatically determines taxonomic profiles from shotgun sequence data, selects reference genomes accordingly and uses them to simulate metagenomic reads. We present an example use case for Tamock by assessing assembly and binning method performance for selected microbiomes.
    Tamock facilitates automated simulation of habitat-specific benchmark metagenomic data based on real sequence data and is implemented as a user-friendly command-line application, providing extensive additional information along with the simulated benchmark data. Resulting benchmarks enable an assessment of computational methods, workflows, and parameters specifically for a metagenomic habitat or ecosystem of a metagenomic study.
    Source code, documentation and install instructions are freely available at GitHub ( https://github.com/gerners/tamock ).

  • ITN-VIROINF: Understanding (Harmful) Virus-Host Interactions by Linking Virology and Bioinformatics.

    Goettsch W, Beerenwinkel N, Deng L, Dölken L, Dutilh BE, Erhard F, Kaderali L, von Kleist M, Marquet R, Matthijnssens J, McCallin S, McMahon D, Rattei T, Van Rij RP, Robertson DL, Schwemmle M, Stern-Ginossar N, Marz M
    2021 - Viruses, 5: in press

    Abstract: 

    Many recent studies highlight the fundamental importance of viruses. Besides their important role as human and animal pathogens, their beneficial, commensal or harmful functions are poorly understood. By developing and applying tailored bioinformatical tools in important virological models, the Marie Skłodowska-Curie Initiative International Training Network VIROINF will provide a better understanding of viruses and the interaction with their hosts. This will open the door to validate methods of improving viral growth, morphogenesis and development, as well as to control strategies against unwanted microorganisms. The key feature of VIROINF is its interdisciplinary nature, which brings together virologists and bioinformaticians to achieve common goals.

  • Sulfoquinovose is a select nutrient of prominent bacteria and a source of hydrogen sulfide in the human gut.

    Hanson BT, Dimitri Kits K, Löffler J, Burrichter AG, Fiedler A, Denger K, Frommeyer B, Herbold CW, Rattei T, Karcher N, Segata N, Schleheck D, Loy A
    2021 - ISME J, 9: 2779-2791

    Abstract: 

    Responses of the microbiota to diet are highly personalized but mechanistically not well understood because many metabolic capabilities and interactions of human gut microorganisms are unknown. Here we show that sulfoquinovose (SQ), a sulfonated monosaccharide omnipresent in green vegetables, is a selective yet relevant substrate for few but ubiquitous bacteria in the human gut. In human feces and in defined co-culture, Eubacterium rectale and Bilophila wadsworthia used recently identified pathways to cooperatively catabolize SQ with 2,3-dihydroxypropane-1-sulfonate as a transient intermediate to hydrogen sulfide (HS), a key intestinal metabolite with disparate effects on host health. SQ-degradation capability is encoded in almost half of E. rectale genomes but otherwise sparsely distributed among microbial species in the human intestine. However, re-analysis of fecal metatranscriptome datasets of four human cohorts showed that SQ degradation (mostly from E. rectale and Faecalibacterium prausnitzii) and HS production (mostly from B. wadsworthia) pathways were expressed abundantly across various health states, demonstrating that these microbial functions are core attributes of the human gut. The discovery of green-diet-derived SQ as an exclusive microbial nutrient and an additional source of HS in the human gut highlights the role of individual dietary compounds and organosulfur metabolism on microbial activity and has implications for precision editing of the gut microbiota by dietary and prebiotic interventions.

  • Regulation of the Mitochondrion-Fatty Acid Axis for the Metabolic Reprogramming of Chlamydia trachomatis during Treatment with β-Lactam Antimicrobials.

    Shima K, Kaufhold I, Eder T, Käding N, Schmidt N, Ogunsulire IM, Deenen R, Köhrer K, Friedrich D, Isay SE, Grebien F, Klinger M, Richer BC, Günther UL, Deepe GS, Rattei T, Rupp J
    2021 - mBio, 2: in press

    Abstract: 

    Infection with the obligate intracellular bacterium is the most common bacterial sexually transmitted disease worldwide. Since no vaccine is available to date, antimicrobial therapy is the only alternative in infection. However, changes in chlamydial replicative activity and the occurrence of chlamydial persistence caused by diverse stimuli have been proven to impair treatment effectiveness. Here, we report the mechanism for regulating host signaling processes and mitochondrial function, which can be used for chlamydial metabolic reprogramming during treatment with β-lactam antimicrobials. Activation of signal transducer and activator of transcription 3 (STAT3) is a well-known host response in various bacterial and viral infections. In infection, inactivation of STAT3 by host protein tyrosine phosphatases increased mitochondrial respiration in both the absence and presence of β-lactam antimicrobials. However, during treatment with β-lactam antimicrobials, increased the production of citrate as well as the activity of host ATP-citrate lyase involved in fatty acid synthesis. Concomitantly, chlamydial metabolism switched from the tricarboxylic acid cycle to fatty acid synthesis. This metabolic switch was a unique response in treatment with β-lactam antimicrobials and was not observed in gamma interferon (IFN-γ)-induced persistent infection. Inhibition of fatty acid synthesis was able to attenuate β-lactam-induced chlamydial persistence. Our findings highlight the importance of the mitochondrion-fatty acid interplay for the metabolic reprogramming of during treatment with β-lactam antimicrobials. The mitochondrion generates most of the ATP in eukaryotic cells, and its activity is used for controlling the intracellular growth of Furthermore, mitochondrial activity is tightly connected to host fatty acid synthesis that is indispensable for chlamydial membrane biogenesis. Phospholipids, which are composed of fatty acids, are the central components of the bacterial membrane and play a crucial role in the protection against antimicrobials. Chlamydial persistence that is induced by various stimuli is clinically relevant. While one of the well-recognized inducers, β-lactam antimicrobials, has been used to characterize chlamydial persistence, little is known about the role of mitochondria in persistent infection. Here, we demonstrate how undergoes metabolic reprogramming to switch from the tricarboxylic acid cycle to fatty acid synthesis with promoted host mitochondrial activity in response to treatment with β-lactam antimicrobials.

  • Learning From Limited Data: Towards Best Practice Techniques for Antimicrobial Resistance Prediction From Whole Genome Sequencing Data.

    Lüftinger L, Májek P, Beisken S, Rattei T, Posch AE
    2021 - Front Cell Infect Microbiol, 610348

    Abstract: 

    Antimicrobial resistance prediction from whole genome sequencing data (WGS) is an emerging application of machine learning, promising to improve antimicrobial resistance surveillance and outbreak monitoring. Despite significant reductions in sequencing cost, the availability and sampling diversity of WGS data with matched antimicrobial susceptibility testing (AST) profiles required for training of WGS-AST prediction models remains limited. Best practice machine learning techniques are required to ensure trained models generalize to independent data for optimal predictive performance. Limited data restricts the choice of machine learning training and evaluation methods and can result in overestimation of model performance. We demonstrate that the widely used random k-fold cross-validation method is ill-suited for application to small bacterial genomics datasets and offer an alternative cross-validation method based on genomic distance. We benchmarked three machine learning architectures previously applied to the WGS-AST problem on a set of 8,704 genome assemblies from five clinically relevant pathogens across 77 species-compound combinations collated from public databases. We show that individual models can be effectively ensembled to improve model performance. By combining models stacked generalization with cross-validation, a model ensembling technique suitable for small datasets, we improved average sensitivity and specificity of individual models by 1.77% and 3.20%, respectively. Furthermore, stacked models exhibited improved robustness and were thus less prone to outlier performance drops than individual component models. In this study, we highlight best practice techniques for antimicrobial resistance prediction from WGS data and introduce the combination of genome distance aware cross-validation and stacked generalization for robust and accurate WGS-AST.

  • Isolate-Based Surveillance of Bordetella pertussis, Austria, 2018-2020.

    Cabal A, Schmid D, Hell M, Chakeri A, Mustafa-Korninger E, Wojna A, Stöger A, Möst J, Leitner E, Hyden P, Rattei T, Habington A, Wiedermann U, Allerberger F, Ruppitsch W
    2021 - Emerg Infect Dis, 3: 862-871

    Abstract: 

    Pertussis is a vaccine-preventable disease, and its recent resurgence might be attributable to the emergence of strains that differ genetically from the vaccine strain. We describe a novel pertussis isolate-based surveillance system and a core genome multilocus sequence typing scheme to assess Bordetella pertussis genetic variability and investigate the increased incidence of pertussis in Austria. During 2018-2020, we obtained 123 B. pertussis isolates and typed them with the new scheme (2,983 targets and preliminary cluster threshold of <6 alleles). B. pertussis isolates in Austria differed genetically from the vaccine strain, both in their core genomes and in their vaccine antigen genes; 31.7% of the isolates were pertactin-deficient. We detected 8 clusters, 1 of them with pertactin-deficient isolates and possibly part of a local outbreak. National expansion of the isolate-based surveillance system is needed to implement pertussis-control strategies.

  • Dahlia variabilis cultivar 'Seattle' as a model plant for anthochlor biosynthesis.

    Walliser B, Lucaciu CR, Molitor C, Marinovic S, Nitarska DA, Aktaş D, Rattei T, Kampatsikas I, Stich K, Haselmair-Gosch C, Halbwirth H
    2021 - Plant Physiol Biochem, 193-201

    Abstract: 

    We investigated the bi-colored dahlia cultivar 'Seattle', which exhibits bright yellow petals with white tips, for its potential use as a model system for studies of the anthochlor biosynthesis. The yellow base contained high amounts of the 6'-deoxychalcones and the structurally related 4-deoxyaurones, as well as flavones. In contrast, only traces of anthochlors and flavones were detected in the white tips. No anthocyanins, flavonols, flavanones or dihydroflavonols were found in the petals. Gene expression studies indicated that the absence of anthocyanins in the petals is caused by a lack of flavanone 3-hydroxylase (FHT) expression, which is accompanied by a lack of expression of the bHLH transcription factor IVS. Expression of other genes involved in anthocyanidin biosynthesis such as dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS) was not affected. The yellow and white petal parts showed significant differences in the expression of chalcone synthase 2 (CHS2), which is sufficient to explain the absence of yellow pigments in the white tips. Transcriptomes of both petal parts were de novo assembled and three candidate genes for chalcone reductase (CHR) were identified. None of them showed a significantly higher expression in the yellow base compared to the white tips. In summary, it was shown that the bicolouration is most likely caused by a bottleneck in chalcone formation in the white tip. The relative prevalence of flavones compared to the anthochlors in the white tips could be an indication for the presence of a so far unknown differentially expressed CHR.

  • scikit-hubness: Hubness Reduction and Approximate Neighbor Search

    Feldbauer R, Rattei T, Flexer A
    2020 - The Journal of Open Source Software, 5: 1957

    Abstract: 

    scikit-hubness is a Python package for efficient nearest neighbor search in high-dimensional spaces. Hubness is an aspect of the curse of dimensionality in nearest neighbor graphs. Specifically, it describes the increasing occurrence of hubs and antihubs with growing data dimensionality: Hubs are objects, that appear unexpectedly often among the nearest neighbors of others objects, while antihubs are never retrieved as neighbors. As a consequence, hubs may propagate their information (for example, class labels) too widely within the neighbor graph, while information from antihubs is depleted. These semantically distorted graphs can reduce learning performance in various tasks, such as classification, clustering, or visualization. Hubness is known to affect a variety of applied learning systems, or improper transport mode detection.

    Currently, there is a lack of fully-featured, up-to-date, user-friendly software dealing with hubness. Available packages miss critical features and have not been updated in years, or are not particularly user-friendly. In this paper we describe scikit-hubness, which provides powerful, readily available, and easy-to-use hubness-related methods.

  • DeepNOG: Fast and accurate protein orthologous group assignment.

    Feldbauer R, Gosch L, Lüftinger L, Hyden P, Flexer A, Rattei T
    2020 - Bioinformatics, in press

    Abstract: 

    Protein orthologous group databases are powerful tools for evolutionary analysis, functional annotation, or metabolic pathway modeling across lineages. Sequences are typically assigned to orthologous groups with alignment-based methods, such as profile hidden Markov models, which has become a computational bottleneck.
    We present DeepNOG, an extremely fast and accurate, alignment-free orthology assignment method based on deep convolutional networks. We compare DeepNOG against state-of-the-art alignment-based (HMMER, DIAMOND) and alignment-free methods (DeepFam) on two orthology databases (COG, eggNOG 5). DeepNOG can be scaled to large orthology databases like eggNOG, for which it outperforms DeepFam in terms of precision and recall by large margins. While alignment-based methods still provide the most accurate assignments among the investigated methods, computing time of DeepNOG is an order of magnitude lower on CPUs. Optional GPU usage further increases throughput massively. A command-line tool enables rapid adoption by users.
    Source code and packages are freely available at https://github.com/univieCUBE/deepnog. Install the platform-independent Python program with $pip install deepnog.
    Supplementary material is available at Bioinformatics online.

  • Functional Seasonality of Free-Living and Particle-Associated Prokaryotic Communities in the Coastal Adriatic Sea.

    Steiner PA, Geijo J, Fadeev E, Obiol A, Sintes E, Rattei T, Herndl GJ
    2020 - Front Microbiol, 584222

    Abstract: 

    Marine snow is an important habitat for microbes, characterized by chemical and physical properties contrasting those of the ambient water. The higher nutrient concentrations in marine snow lead to compositional differences between the ambient water and the marine snow-associated prokaryotic community. Whether these compositional differences vary due to seasonal environmental changes, however, remains unclear. Thus, we investigated the seasonal patterns of the free-living and marine snow-associated microbial community composition and their functional potential in the northern Adriatic Sea. Our data revealed seasonal patterns in both, the free-living and marine snow-associated prokaryotes. The two assemblages were more similar to each other in spring and fall than in winter and summer. The taxonomic distinctness resulted in a contrasting functional potential. Motility and adaptations to low temperature in winter and partly anaerobic metabolism in summer characterized the marine snow-associated prokaryotes. Free-living prokaryotes were enriched in genes indicative for functions related to phosphorus limitation in winter and in genes tentatively supplementing heterotrophic growth with proteorhodopsins and CO-oxidation in summer. Taken together, the results suggest a strong influence of environmental parameters on both free-living and marine snow-associated prokaryotic communities in spring and fall leading to higher similarity between the communities, while the marine snow habitat in winter and summer leads to a specific prokaryotic community in marine snow in these two seasons.

  • Viral ecogenomics across the Porifera.

    Pascelli C, Laffy PW, Botté E, Kupresanin M, Rattei T, Lurgi M, Ravasi T, Webster NS
    2020 - Microbiome, 1: 144

    Abstract: 

    Viruses directly affect the most important biological processes in the ocean via their regulation of prokaryotic and eukaryotic populations. Marine sponges form stable symbiotic partnerships with a wide diversity of microorganisms and this high symbiont complexity makes them an ideal model for studying viral ecology. Here, we used morphological and molecular approaches to illuminate the diversity and function of viruses inhabiting nine sponge species from the Great Barrier Reef and seven from the Red Sea.
    Viromic sequencing revealed host-specific and site-specific patterns in the viral assemblages, with all sponge species dominated by the bacteriophage order Caudovirales but also containing variable representation from the nucleocytoplasmic large DNA virus families Mimiviridae, Marseilleviridae, Phycodnaviridae, Ascoviridae, Iridoviridae, Asfarviridae and Poxviridae. Whilst core viral functions related to replication, infection and structure were largely consistent across the sponge viromes, functional profiles varied significantly between species and sites largely due to differential representation of putative auxiliary metabolic genes (AMGs) and accessory genes, including those associated with herbicide resistance, heavy metal resistance and nylon degradation. Furthermore, putative AMGs varied with the composition and abundance of the sponge-associated microbiome. For instance, genes associated with antimicrobial activity were enriched in low microbial abundance sponges, genes associated with nitrogen metabolism were enriched in high microbial abundance sponges and genes related to cellulose biosynthesis were enriched in species that host photosynthetic symbionts.
    Our results highlight the diverse functional roles that viruses can play in marine sponges and are consistent with our current understanding of sponge ecology. Differential representation of putative viral AMGs and accessory genes across sponge species illustrate the diverse suite of beneficial roles viruses can play in the functional ecology of these complex reef holobionts. Video Abstract.

  • Molecular causes of an evolutionary shift along the parasitism-mutualism continuum in a bacterial symbiont.

    Herrera P, Schuster L, Wentrup C, König L, Kempinger T, Na H, Schwarz J, Köstlbacher S, Wascher F, Zojer M, Rattei T, Horn M
    2020 - Proc Natl Acad Sci U S A, 35: 21658-21666

    Abstract: 

    Symbiosis with microbes is a ubiquitous phenomenon with a massive impact on all living organisms, shaping the world around us today. Theoretical and experimental studies show that vertical transmission of symbionts leads to the evolution of mutualistic traits, whereas horizontal transmission facilitates the emergence of parasitic features. However, these studies focused on phenotypic data, and we know little about underlying molecular changes at the genomic level. Here, we combined an experimental evolution approach with infection assays, genome resequencing, and global gene expression analysis to study the effect of transmission mode on an obligate intracellular bacterial symbiont. We show that a dramatic shift in the frequency of genetic variants, coupled with major changes in gene expression, allow the symbiont to alter its position in the parasitism-mutualism continuum depending on the mode of between-host transmission. We found that increased parasitism in horizontally transmitted chlamydiae residing in amoebae was a result of processes occurring at the infectious stage of the symbiont's developmental cycle. Specifically, genes involved in energy production required for extracellular survival and the type III secretion system-the symbiont's primary virulence mechanism-were significantly up-regulated. Our results identify the genomic and transcriptional dynamics sufficient to favor parasitic or mutualistic strategies.

  • Revealing the Venomous Secrets of the Spider's Web.

    Esteves FG, Dos Santos-Pinto JRA, Ferro M, Sialana FJ, Smidak R, Rares LC, Nussbaumer T, Rattei T, Bilban M, Bacci Júnior M, Lubec G, Palma MS
    2020 - J Proteome Res, 8: 3044-3059

    Abstract: 

    Orb-weaving spiders use a highly strong, sticky and elastic web to catch their prey. These web properties alone would be enough for the entrapment of prey; however, these spiders may be hiding venomous secrets in the web, which current research is revealing. Here, we provide strong proteotranscriptomic evidence for the presence of toxin/neurotoxin-like proteins, defensins, and proteolytic enzymes on the web silk from spider. The results from quantitative-based transcriptomic and proteomic approaches showed that silk-producing glands produce an extensive repertoire of toxin/neurotoxin-like proteins, similar to those already reported in spider venoms. Meanwhile, the insect toxicity results demonstrated that these toxic components can be lethal and/or paralytic chemical weapons used for prey capture on the web, and the presence of fatty acids in the web may be a responsible mechanism opening the way to the web toxins for accessing the interior of prey's body, as shown here. Comparative phylogenomic-level evolutionary analyses revealed orthologous genes among two spider groups, Araneomorphae and Mygalomorphae, and the findings showed protein sequences similar to toxins found in the taxa Scorpiones and Hymenoptera in addition to Araneae. Overall, these data represent a valuable resource to further investigate other spider web toxin systems and also suggest that web is not a passive mechanical trap for prey capture, but it exerts an active role in prey paralysis/killing using a series of neurotoxins.

  • Prebiotic Effects of Partially Hydrolyzed Guar Gum on the Composition and Function of the Human Microbiota-Results from the PAGODA Trial.

    Reider SJ, Moosmang S, Tragust J, Trgovec-Greif L, Tragust S, Perschy L, Przysiecki N, Sturm S, Tilg H, Stuppner H, Rattei T, Moschen AR
    2020 - Nutrients, 5: in press

    Abstract: 

    (1) Background: Alterations in the structural composition of the human gut microbiota have been identified in various disease entities along with exciting mechanistic clues by reductionist gnotobiotic modeling. Improving health by beneficially modulating an altered microbiota is a promising treatment approach. Prebiotics, substrates selectively used by host microorganisms conferring a health benefit, are broadly used for dietary and clinical interventions. Herein, we sought to investigate the microbiota-modelling effects of the soluble fiber, partially hydrolyzed guar gum (PHGG). (2) Methods: We performed a 9 week clinical trial in 20 healthy volunteers that included three weeks of a lead-in period, followed by three weeks of an intervention phase, wherein study subjects received 5 g PHGG up to three times per day, and concluding with a three-week washout period. A stool diary was kept on a daily basis, and clinical data along with serum/plasma and stool samples were collected on a weekly basis. PHGG-induced alterations of the gut microbiota were studied by 16S metagenomics of the V1-V3 and V3-V4 regions. To gain functional insight, we further studied stool metabolites using nuclear magnetic resonance (NMR) spectroscopy. (3) Results: In healthy subjects, PHGG had significant effects on stool frequency and consistency. These effects were paralleled by changes in α- (species evenness) and β-diversity (Bray-Curtis distances), along with increasing abundances of metabolites including butyrate, acetate and various amino acids. On a taxonomic level, PHGG intake was associated with a bloom in , , and and a reduction in , and . The majority of effects disappeared after stopping the prebiotic and most effects tended to be more pronounced in male participants. (4) Conclusions: Herein, we describe novel aspects of the prebiotic PHGG on compositional and functional properties of the healthy human microbiota.

  • SciPy 1.0: fundamental algorithms for scientific computing in Python.

    Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P
    2020 - Nat. Methods, in press

    Abstract: 

    SciPy is an open-source scientific computing library for the Python programming language. Since its initial release in 2001, SciPy has become a de facto standard for leveraging scientific algorithms in Python, with over 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories and millions of downloads per year. In this work, we provide an overview of the capabilities and development practices of SciPy 1.0 and highlight some recent technical developments.

  • Exploring Actinobacteria Associated With Rhizosphere and Endosphere of the Native Alpine Medicinal Plant Subspecies .

    Oberhofer M, Hess J, Leutgeb M, Gössnitzer F, Rattei T, Wawrosch C, Zotchev SB
    2019 - Front Microbiol, 2531

    Abstract: 

    The rhizosphere of plants is enriched in nutrients facilitating growth of microorganisms, some of which are recruited as endophytes. Endophytes, especially Actinobacteria, are known to produce a plethora of bioactive compounds. We hypothesized that subsp. (Edelweiss), a rare alpine medicinal plant, may serve as yet untapped source for uncommon Actinobacteria associated with this plant. Rhizosphere soil of native Alpine plants was used, after physical and chemical pre-treatments, for isolating Actinobacteria. Isolates were selected based on morphology and identified by 16S rRNA gene-based barcoding. Resulting 77 Actinobacteria isolates represented the genera , , , , , , , and . In parallel, Edelweiss plants from the same location were surface-sterilized, separated into leaves, roots, rhizomes, and inflorescence and pooled within tissues before genomic DNA extraction. Metagenomic 16S rRNA gene amplicons confirmed large numbers of actinobacterial operational taxonomic units (OTUs) descending in diversity from roots to rhizomes, leaves and inflorescences. These metagenomic data, when queried with isolate sequences, revealed an overlap between the two datasets, suggesting recruitment of soil bacteria by the plant. Moreover, this study uncovered a profound diversity of uncultured Actinobacteria from Rubrobacteridae, Thermoleophilales, Acidimicrobiales and unclassified Actinobacteria specifically in belowground tissues, which may be exploited by a targeted isolation approach in the future.

  • Hybrid de novo transcriptome assembly of poinsettia (Euphorbia pulcherrima Willd. Ex Klotsch) bracts.

    Vilperte V, Lucaciu CR, Halbwirth H, Boehm R, Rattei T, Debener T
    2019 - BMC genomics, 1: 900

    Abstract: 

    Poinsettia is a popular and important ornamental crop, mostly during the Christmas season. Its bract coloration ranges from pink/red to creamy/white shades. Despite its ornamental value, there is a lack of knowledge about the genetics and molecular biology of poinsettia, especially on the mechanisms of color formation. We performed an RNA-Seq analysis in order to shed light on the transcriptome of poinsettia bracts. Moreover, we analyzed the transcriptome differences of red- and white-bracted poinsettia varieties during bract development and coloration. For the assembly of a bract transcriptome, two paired-end cDNA libraries from a red and white poinsettia pair were sequenced with the Illumina technology, and one library from a red-bracted variety was used for PacBio sequencing. Both short and long reads were assembled using a hybrid de novo strategy. Samples of red- and white-bracted poinsettias were sequenced and comparatively analyzed in three color developmental stages in order to understand the mechanisms of color formation and accumulation in the species.
    The final transcriptome contains 288,524 contigs, with 33% showing confident protein annotation against the TAIR10 database. The BUSCO pipeline, which is based on near-universal orthologous gene groups, was applied to assess the transcriptome completeness. From a total of 1440 BUSCO groups searched, 77% were categorized as complete (41% as single-copy and 36% as duplicated), 10% as fragmented and 13% as missing BUSCOs. The gene expression comparison between red and white varieties of poinsettia showed a differential regulation of the flavonoid biosynthesis pathway only at particular stages of bract development. An initial impairment of the flavonoid pathway early in the color accumulation process for the white poinsettia variety was observed, but these differences were no longer present in the subsequent stages of bract development. Nonetheless, GSTF11 and UGT79B10 showed a lower expression in the last stage of bract development for the white variety and, therefore, are potential candidates for further studies on poinsettia coloration.
    In summary, this transcriptome analysis provides a valuable foundation for further studies on poinsettia, such as plant breeding and genetics, and highlights crucial information on the molecular mechanism of color formation.

  • Helicobacter pylori in ancient human remains.

    Maixner F, Thorell K, Granehäll L, Linz B, Moodley Y, Rattei T, Engstrand L, Zink A
    2019 - World J. Gastroenterol., 42: 6289-6298

    Abstract: 

    The bacterium () infects the stomachs of approximately 50% of all humans. With its universal occurrence, high infectivity and virulence properties it is considered as one of the most severe global burdens of modern humankind. It has accompanied humans for many thousands of years, and due to its high genetic variability and vertical transmission, its population genetics reflects the history of human migrations. However, especially complex demographic events such as the colonisation of Europe cannot be resolved with population genetic analysis of modern strains alone. This is best exemplified with the reconstruction of the 5300-year-old genome of the Iceman, a European Copper Age mummy. Our analysis provided precious insights into the ancestry and evolution of the pathogen and underlined the high complexity of ancient European population history. In this review we will provide an overview on the molecular analysis of in mummified human remains that were done so far and we will outline methodological advancements in the field of ancient DNA research that support the reconstruction and authentication of ancient genome sequences.

  • A Bioinformatics Guide to Plant Microbiome Analysis.

    Lucaciu R, Pelikan C, Gerner SM, Zioutis C, Köstlbacher S, Marx H, Herbold CW, Schmidt H, Rattei T
    2019 - Front Plant Sci, 1313

    Abstract: 

    Recent evidence for intimate relationship of plants with their microbiota shows that plants host individual and diverse microbial communities that are essential for their survival. Understanding their relatedness using genome-based and high-throughput techniques remains a hot topic in microbiome research. Molecular analysis of the plant holobiont necessitates the application of specific sampling and preparatory steps that also consider sources of unwanted information, such as soil, co-amplified plant organelles, human DNA, and other contaminations. Here, we review state-of-the-art and present practical guidelines regarding experimental and computational aspects to be considered in molecular plant-microbiome studies. We discuss sequencing and "omics" techniques with a focus on the requirements needed to adapt these methods to individual research approaches. The choice of primers and sequence databases is of utmost importance for amplicon sequencing, while the assembly and binning of shotgun metagenomic sequences is crucial to obtain quality data. We discuss specific bioinformatic workflows to overcome the limitation of genome database resources and for covering large eukaryotic genomes such as fungi. In transcriptomics, it is necessary to account for the separation of host mRNA or dual-RNAseq data. Metaproteomics approaches provide a snapshot of the protein abundances within a plant tissue which requires the knowledge of complete and well-annotated plant genomes, as well as microbial genomes. Metabolomics offers a powerful tool to detect and quantify small molecules and molecular changes at the plant-bacteria interface if the necessary requirements with regard to (secondary) metabolite databases are considered. We highlight data integration and complementarity which should help to widen our understanding of the interactions among individual players of the plant holobiont in the future.

  • The Prevotella copri Complex Comprises Four Distinct Clades Underrepresented in Westernized Populations.

    Tett A, Huang KD, Asnicar F, Fehlner-Peach H, Pasolli E, Karcher N, Armanini F, Manghi P, Bonham K, Zolfo M, De Filippis F, Magnabosco C, Bonneau R, Lusingu J, Amuasi J, Reinhard K, Rattei T, Boulund F, Engstrand L, Zink A, Collado MC, Littman DR, Eibach D, Ercolini D, Rota-Stabelli O, Huttenhower C, Maixner F, Segata N
    2019 - Cell Host Microbe, 5: 666-679.e7

    Abstract: 

    Prevotella copri is a common human gut microbe that has been both positively and negatively associated with host health. In a cross-continent meta-analysis exploiting >6,500 metagenomes, we obtained >1,000 genomes and explored the genetic and population structure of P. copri. P. copri encompasses four distinct clades (>10% inter-clade genetic divergence) that we propose constitute the P. copri complex, and all clades were confirmed by isolate sequencing. These clades are nearly ubiquitous and co-present in non-Westernized populations. Genomic analysis showed substantial functional diversity in the complex with notable differences in carbohydrate metabolism, suggesting that multi-generational dietary modifications may be driving reduced prevalence in Westernized populations. Analysis of ancient metagenomes highlighted patterns of P. copri presence consistent with modern non-Westernized populations and a clade delineation time pre-dating human migratory waves out of Africa. These findings reveal that P. copri exhibits a high diversity that is underrepresented in Western-lifestyle populations.

  • Highly variable mRNA half-life time within marine bacterial taxa and functional genes.

    Steiner PA, De Corte D, Geijo J, Mena C, Yokokawa T, Rattei T, Herndl GJ, Sintes E
    2019 - Environ Microbiol, 10: 3873-3884

    Abstract: 

    Messenger RNA can provide valuable insights into the variability of metabolic processes of microorganisms. However, due to uncertainties that include the stability of RNA, its application for activity profiling of environmental samples is questionable. We explored different factors affecting the decay rate of transcripts of three marine bacterial isolates using qPCR and determined mRNA half-life time of specific bacterial taxa and of functional genes by metatranscriptomics of a coastal environmental prokaryotic community. The half-life time of transcripts from 11 genes from bacterial isolates ranged from 1 to 46 min. About 80% of the analysed transcripts exhibited half-live times shorter than 10 min. Significant differences were found in the half-life time between mRNA and rRNA. The half-life time of mRNA obtained from a coastal metatranscriptome ranged from 9 to 400 min. The shortest half-life times of the metatranscriptome corresponded to transcripts from the same clusters of orthologous groups (COGs) in all bacterial classes. The prevalence of short mRNA half-life time in genes related to defence mechanisms and motility indicate a tight connection of RNA decay rate to environmental stressors. The short half-life time of RNA and its high variability needs to be considered when assessing metatranscriptomes especially in environmental samples.

  • Thermal stress modifies the marine sponge virome.

    Laffy PW, Botté ES, Wood-Charlson EM, Weynberg KD, Rattei T, Webster NS
    2019 - Environ Microbiol Rep, 5: 690-698

    Abstract: 

    Marine sponges can form stable partnerships with a wide diversity of microbes and viruses, and this high intraspecies symbiont specificity makes them ideal models for exploring how host-associated viromes respond to changing environmental conditions. Here we exposed the abundant Great Barrier Reef sponge Rhopaloiedes odorabile to elevated seawater temperature for 48 h and utilised a metaviromic approach to assess the response of the associated viral community. An increase in endogenous retro-transcribing viruses within the Caulimorviridae and Retroviridae families was detected within the first 12 h of exposure to 32 °C, and a 30-fold increase in retro-transcribing viruses was evident after 48 h at 32 °C. Thermally stressed sponges also exhibited a complete loss of ssDNA viruses which were prevalent in field samples and sponges from the control temperature treatment. Despite these viromic changes, functional analysis failed to detect any loss or gain of auxiliary metabolic genes, indicating that viral communities are not providing a direct competitive advantage to their host under thermal stress. In contrast, endogenous sponge retro-transcribing viruses appear to be replicating under thermal stress, and consistent with retroviral infections in other organisms, may be contributing to the previously described rapid decline in host health evident at elevated temperature.

  • Characterization of a thaumarchaeal symbiont that drives incomplete nitrification in the tropical sponge Ianthella basta.

    Moeller FU, Webster NS, Herbold CW, Behnam F, Domman D, Albertsen M, Mooshammer M, Markert S, Turaev D, Becher D, Rattei T, Schweder T, Richter A, Watzka M, Nielsen PH, Wagner M
    2019 - Environ Microbiol, 10: 3831-3854

    Abstract: 

    Marine sponges represent one of the few eukaryotic groups that frequently harbour symbiotic members of the Thaumarchaeota, which are important chemoautotrophic ammonia-oxidizers in many environments. However, in most studies, direct demonstration of ammonia-oxidation by these archaea within sponges is lacking, and little is known about sponge-specific adaptations of ammonia-oxidizing archaea (AOA). Here, we characterized the thaumarchaeal symbiont of the marine sponge Ianthella basta using metaproteogenomics, fluorescence in situ hybridization, qPCR and isotope-based functional assays. 'Candidatus Nitrosospongia ianthellae' is only distantly related to cultured AOA. It is an abundant symbiont that is solely responsible for nitrite formation from ammonia in I. basta that surprisingly does not harbour nitrite-oxidizing microbes. Furthermore, this AOA is equipped with an expanded set of extracellular subtilisin-like proteases, a metalloprotease unique among archaea, as well as a putative branched-chain amino acid ABC transporter. This repertoire is strongly indicative of a mixotrophic lifestyle and is (with slight variations) also found in other sponge-associated, but not in free-living AOA. We predict that this feature as well as an expanded and unique set of secreted serpins (protease inhibitors), a unique array of eukaryotic-like proteins, and a DNA-phosporothioation system, represent important adaptations of AOA to life within these ancient filter-feeding animals.

  • A proteotranscriptomic study of silk-producing glands from the orb-weaving spiders.

    Dos Santos-Pinto JRA, Esteves FG, Sialana FJ, Ferro M, Smidak R, Rares LC, Nussbaumer T, Rattei T, Bilban M, Bacci Júnior M, Palma MS, Lubec G
    2019 - Mol Omics, 4: 256-270

    Abstract: 

    Orb-weaving spiders can produce different silk fibers, which constitute outstanding materials characterized by their high strength and elasticity. Researchers have tried to reproduce the fibers of these proteins synthetically and/or by using recombinant DNA technology, but only a few of the natural physicochemical and biophysical properties have been obtained to date. Female orb-web-spiders present seven silk-glands, which synthesize the spidroins and a series of other proteins, which interact with the spidroins, resulting in silk fibers with notable physicochemical properties. Despite the recognized importance of the silk-glands for understanding how the fibers are produced and processed, the investigation of these glands is at a nascent stage. In the current study we present the assembled transcriptome of silk-producing glands from the orb-weaving spider Nephila clavipes, as well as develop a large-scale proteomic approach for in-depth analyses of silk-producing glands. The present investigation revealed an extensive repertoire of hitherto undescribed proteins involved in silk secretion and processing, such as prevention of degradation during the silk spinning process, transportation, protection against proteolytic autolysis and against oxidative stress, molecular folding and stabilization, and post-translational modifications. Comparative phylogenomic-level evolutionary analyses revealed orthologous genes among three groups of silk-producing organisms - (i) Araneomorphae spiders, (ii) Mygalomorphae spiders, and (iii) silk-producing insects. A common orthologous gene, which was annotated as silk gland factor-3 is present among all species analysed. This protein belongs to a transcription factor family, that is important and related to the development of the silk apparatus synthesis in the silk glands of silk-producing arthropods.

  • Proteome Changes Paralleling the Olfactory Conditioning in the Forager Honey Bee and Provision of a Brain Proteomics Dataset.

    Sialana FJ, Menegasso ARS, Smidak R, Hussein AM, Zavadil M, Rattei T, Lubec G, Palma MS, Lubec J
    2019 - Proteomics, e1900094

    Abstract: 

    The olfactory conditioning of the bee proboscis extension reflex (PER) has been extensively used as a paradigm in associative learning of invertebrates but with limited molecular investigations. To investigate which protein changes are linked to olfactory conditioning, we applied a non-sophisticated conditioning model using the PER in the honeybee (Apis mellifera). Foraging honeybees were assigned into three groups based on the reflex behaviour and training: conditioned using 2-octanone (PER-conditioned), and sucrose and water controls. Thereafter, the brain synaptosomal proteins were isolated and analyzed by quantitative proteomics using stable isotope labeling (TMT). Additionally, the complex proteome dataset of the bee brain was generated with a total number of 5411 protein groups, including key players in neurotransmitter signalling. The most significant categories affected during olfactory conditioning were associated with "SNARE interactions in vesicular transport" (BET1 and VAMP7), ABC transporters, and fatty acid degradation pathways. This article is protected by copyright. All rights reserved.

  • Conserved Secondary Structures in Viral mRNAs.

    Kiening M, Ochsenreiter R, Hellinger HJ, Rattei T, Hofacker I, Frishman D
    2019 - Viruses, 5: in press

    Abstract: 

    RNA secondary structure in untranslated and protein coding regions has been shown to play an important role in regulatory processes and the viral replication cycle. While structures in non-coding regions have been investigated extensively, a thorough overview of the structural repertoire of protein coding mRNAs, especially for viruses, is lacking. Secondary structure prediction of large molecules, such as long mRNAs remains a challenging task, as the contingent of structures a sequence can theoretically fold into grows exponentially with sequence length. We applied a structure prediction pipeline to Viral Orthologous Groups that first identifies the local boundaries of potentially structured regions and subsequently predicts their functional importance. Using this procedure, the orthologous groups were split into structurally homogenous subgroups, which we call subVOGs. This is the first compilation of potentially functional conserved RNA structures in viral coding regions, covering the complete RefSeq viral database. We were able to recover structural elements from previous studies and discovered a variety of novel structured regions. The subVOGs are available through our web resource RNASIV (RNA structure in viruses; http://rnasiv.bio.wzw.tum.de).

  • The horse Y chromosome as an informative marker for tracing sire lines.

    Felkel S, Vogl C, Rigler D, Dobretsberger V, Chowdhary BP, Distl O, Fries R, Jagannathan V, Janečka JE, Leeb T, Lindgren G, McCue M, Metzger J, Neuditschko M, Rattei T, Raudsepp T, Rieder S, Rubin CJ, Schaefer R, Schlötterer C, Thaller G, Tetens J, Velie B, Brem G, Wallner B
    2019 - Sci Rep, 1: 6095

    Abstract: 

    Analysis of the Y chromosome is the best-established way to reconstruct paternal family history in humans. Here, we applied fine-scaled Y-chromosomal haplotyping in horses with biallelic markers and demonstrate the potential of our approach to address the ancestry of sire lines. We de novo assembled a draft reference of the male-specific region of the Y chromosome from Illumina short reads and then screened 5.8 million basepairs for variants in 130 specimens from intensively selected and rural breeds and nine Przewalski's horses. Among domestic horses we confirmed the predominance of a young'crown haplogroup' in Central European and North American breeds. Within the crown, we distinguished 58 haplotypes based on 211 variants, forming three major haplogroups. In addition to two previously characterised haplogroups, one observed in Arabian/Coldblooded and the other in Turkoman/Thoroughbred horses, we uncovered a third haplogroup containing Iberian lines and a North African Barb Horse. In a genealogical showcase, we distinguished the patrilines of the three English Thoroughbred founder stallions and resolved a historic controversy over the parentage of the horse 'Galopin', born in 1872. We observed two nearly instantaneous radiations in the history of Central and Northern European Y-chromosomal lineages that both occurred after domestication 5,500 years ago.

  • Man-made microbial resistances in built environments.

    Mahnert A, Moissl-Eichinger C, Zojer M, Bogumil D, Mizrahi I, Rattei T, Martinez JL, Berg G
    2019 - Nat Commun, 1: 968

    Abstract: 

    Antimicrobial resistance is a serious threat to global public health, but little is known about the effects of microbial control on the microbiota and its associated resistome. Here we compare the microbiota present on surfaces of clinical settings with other built environments. Using state-of-the-art metagenomics approaches and genome and plasmid reconstruction, we show that increased confinement and cleaning is associated with a loss of microbial diversity and a shift from Gram-positive bacteria, such as Actinobacteria and Firmicutes, to Gram-negative such as Proteobacteria. Moreover, the microbiome of highly maintained built environments has a different resistome when compared to other built environments, as well as a higher diversity in resistance genes. Our results highlight that the loss of microbial diversity correlates with an increase in resistance, and the need for implementing strategies to restore bacterial diversity in certain built environments.

  • Long-Term Transcriptional Activity at Zero Growth of a Cosmopolitan Rare Biosphere Member.

    Hausmann B, Pelikan C, Rattei T, Loy A, Pester M
    2019 - mBio, 1: in press

    Abstract: 

    Microbial diversity in the environment is mainly concealed within the rare biosphere (all species with <0.1% relative abundance). While dormancy explains a low-abundance state very well, the mechanisms leading to rare but active microorganisms remain elusive. We used environmental systems biology to genomically and transcriptionally characterize " Desulfosporosinus infrequens," a low-abundance sulfate-reducing microorganism cosmopolitan to freshwater wetlands, where it contributes to cryptic sulfur cycling. We obtained its near-complete genome by metagenomics of acidic peat soil. In addition, we analyzed anoxic peat soil incubated under -like conditions for 50 days by -targeted qPCR and metatranscriptomics. The population stayed at a constant low abundance under all incubation conditions, averaging 1.2 × 10 16S rRNA gene copies per cm³ soil. In contrast, transcriptional activity of " Desulfosporosinus infrequens" increased at day 36 by 56- to 188-fold when minor amendments of acetate, propionate, lactate, or butyrate were provided with sulfate, compared to the no-substrate-control. Overall transcriptional activity was driven by expression of genes encoding ribosomal proteins, energy metabolism, and stress response but not by expression of genes encoding cell growth-associated processes. Since our results did not support growth of these highly active microorganisms in terms of biomass increase or cell division, they had to invest their sole energy for maintenance, most likely counterbalancing acidic pH conditions. This finding explains how a rare biosphere member can contribute to a biogeochemically relevant process while remaining in a zero-growth state over a period of 50 days. The microbial rare biosphere represents the largest pool of biodiversity on Earth and constitutes, in sum of all its members, a considerable part of a habitat's biomass. Dormancy or starvation is typically used to explain the persistence of low-abundance microorganisms in the environment. We show that a low-abundance microorganism can be highly transcriptionally active while remaining in a zero-growth state for at least 7 weeks. Our results provide evidence that this zero growth at a high cellular activity state is driven by maintenance requirements. We show that this is true for a microbial keystone species, in particular a cosmopolitan but permanently low-abundance sulfate-reducing microorganism in wetlands that is involved in counterbalancing greenhouse gas emissions. In summary, our results provide an important step forward in understanding time-resolved activities of rare biosphere members relevant for ecosystem functions.

  • Plasmid DNA contaminant in molecular reagents.

    Wally N, Schneider M, Thannesberger J, Kastner MT, Bakonyi T, Indik S, Rattei T, Bedarf J, Hildebrand F, Law J, Jovel J, Steininger C
    2019 - Sci Rep, 1: 1652

    Abstract: 

    Background noise in metagenomic studies is often of high importance and its removal requires extensive post-analytic, bioinformatics filtering. This is relevant as significant signals may be lost due to a low signal-to-noise ratio. The presence of plasmid residues, that are frequently present in reagents as contaminants, has not been investigated so far, but may pose a substantial bias. Here we show that plasmid sequences from different sources are omnipresent in molecular biology reagents. Using a metagenomic approach, we identified the presence of the (pol) of equine infectious anemia virus in human samples and traced it back to the expression plasmid used for generation of a commercial reverse transcriptase. We found fragments of multiple other expression plasmids in human samples as well as commercial polymerase preparations. Plasmid contamination sources included production chain of molecular biology reagents as well as contamination of reagents from environment or human handling of samples and reagents. Retrospective analyses of published metagenomic studies revealed an inaccurate signal-to-noise differentiation. Hence, the plasmid sequences that seem to be omnipresent in molecular biology reagents may misguide conclusions derived from genomic/metagenomics datasets and thus also clinical interpretations. Critical appraisal of metagenomic data sets for the possibility of plasmid background noise is required to identify reliable and significant signals.

  • Assessment of urban microbiome assemblies with the help of targeted in silico gold standards.

    Gerner SM, Rattei T, Graf AB
    2018 - Biol. Direct, 1: 22

    Abstract: 

    Microbial communities play a crucial role in our environment and may influence human health tremendously. Despite being the place where human interaction is most abundant we still know little about the urban microbiome. This is highlighted by the large amount of unclassified DNA reads found in urban metagenome samples. The only in silico approach that allows us to find unknown species, is the assembly and classification of draft genomes from a metagenomic dataset. In this study we (1) investigate the applicability of an assembly and binning approach for urban metagenome datasets, and (2) develop a new method for the generation of in silico gold standards to better understand the specific challenges of such datasets and provide a guide in the selection of available software.
    We applied combinations of three assembly (Megahit, SPAdes and MetaSPAdes) and three binning tools (MaxBin, MetaBAT and CONCOCT) to whole genome shotgun datasets from the CAMDA 2017 Challenge. Complex in silico gold standards with a simulated bacterial fraction were generated for representative samples of each surface type and city. Using these gold standards, we found the combination of SPAdes and MetaBAT to be optimal for urban metagenome datasets by providing the best trade-off between the number of high-quality genome draft bins (MIMAG standards) retrieved, the least amount of misassemblies and contamination. The assembled draft genomes included known species like Propionibacterium acnes but also novel species according to respective ANI values.
    In our work, we showed that, even for datasets with high diversity and low sequencing depth from urban environments, assembly and binning-based methods can provide high-quality genome drafts. Of vital importance to retrieve high-quality genome drafts is sequence depth but even more so a high proportion of the bacterial sequence fraction too achieve high coverage for bacterial genomes. In contrast to read-based methods relying on database knowledge, genome-centric methods as applied in this study can provide valuable information about unknown species and strains as well as functional contributions of single community members within a sample. Furthermore, we present a method for the generation of sample-specific highly complex in silico gold standards.
    This article was reviewed by Craig Herbold, Serghei Mangul and Yana Bromberg.

  • Minimum Information about an Uncultivated Virus Genome (MIUViG).

    Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M, Kuhn JH, Lavigne R, Brister JR, Varsani A, Amid C, Aziz RK, Bordenstein SR, Bork P, Breitbart M, Cochrane GR, Daly RA, Desnues C, Duhaime MB, Emerson JB, Enault F, Fuhrman JA, Hingamp P, Hugenholtz P, Hurwitz BL, Ivanova NN, Labonté JM, Lee KB, Malmstrom RR, Martinez-Garcia M, Mizrachi IK, Ogata H, Páez-Espino D, Petit MA, Putonti C, Rattei T, Reyes A, Rodriguez-Valera F, Rosario K, Schriml L, Schulz F, Steward GF, Sullivan MB, Sunagawa S, Suttle CA, Temperton B, Tringe SG, Thurber RV, Webster NS, Whiteson KL, Wilhelm SW, Wommack KE, Woyke T, Wrighton KC, Yilmaz P, Yoshida T, Young MJ, Yutin N, Allen LZ, Kyrpides NC, Eloe-Fadrosh EA
    2018 - Nat. Biotechnol., in press

    Abstract: 

    We present an extension of the Minimum Information about any (x) Sequence (MIxS) standard for reporting sequences of uncultivated virus genomes. Minimum Information about an Uncultivated Virus Genome (MIUViG) standards were developed within the Genomic Standards Consortium framework and include virus origin, genome quality, genome annotation, taxonomic classification, biogeographic distribution and in silico host prediction. Community-wide adoption of MIUViG standards, which complement the Minimum Information about a Single Amplified Genome (MISAG) and Metagenome-Assembled Genome (MIMAG) standards for uncultivated bacteria and archaea, will improve the reporting of uncultivated virus genomes in public databases. In turn, this should enable more robust comparative studies and a systematic exploration of the global virosphere.

  • Insecticidal Toxicity of Involves the Novel Enterotoxin YacT.

    Springer K, Sänger PA, Moritz C, Felsl A, Rattei T, Fuchs TM
    2018 - Front Cell Infect Microbiol, 392

    Abstract: 

    The genus comprises 19 species of which three are known as human and animal pathogens. Some species display toxicity toward invertebrates using the so-called toxin complex (TC) and/or determinants that are not yet known. Recent studies showed a remarkable variability of insecticidal activities when representatives of different species (spp.) were subcutaneously injected into the greater wax moth, . Here, we demonstrate that and are highly toxic to this insect. A member of phylogroup 1B killed larvae with injection doses of approximately 38 cells only, thus resembling the insecticidal activity of . The pathogenicity spp. displays toward the larvae was higher at 15°C than at 30°C and independent of the TC. However, upon subtraction of all genes of the low-pathogenic strain W22703 from the genomes of and , we identified a set of genes that may be responsible for the toxicity of these two species. Indeed, a mutant of lacking , a gene that encodes a protein similar to the heat-stable cytotonic enterotoxin (Ast) of , exhibited a reduced pathogenicity toward larvae and altered the morphology of hemocytes. The data suggests that the repertoire of virulence determinants present in environmental species remains to be elucidated.

  • eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses.

    Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, von Mering C, Bork P
    2018 - Nucleic Acids Res., in press

    Abstract: 

    eggNOG is a public database of orthology relationships, gene evolutionary histories and functional annotations. Here, we present version 5.0, featuring a major update of the underlying genome sets, which have been expanded to 4445 representative bacteria and 168 archaea derived from 25 038 genomes, as well as 477 eukaryotic organisms and 2502 viral proteomes that were selected for diversity and filtered by genome quality. In total, 4.4M orthologous groups (OGs) distributed across 379 taxonomic levels were computed together with their associated sequence alignments, phylogenies, HMM models and functional descriptors. Precomputed evolutionary analysis provides fine-grained resolution of duplication/speciation events within each OG. Our benchmarks show that, despite doubling the amount of genomes, the quality of orthology assignments and functional annotations (80% coverage) has persisted without significant changes across this update. Finally, we improved eggNOG online services for fast functional annotation and orthology prediction of custom genomics or metagenomics datasets. All precomputed data are publicly available for downloading or via API queries at http://eggnog.embl.de.

  • A promiscuous beta-glucosidase is involved in benzoxazinoid deglycosylation in Lamium galeobdolon.

    Hannemann L, Lucaciu CR, Sharma S, Rattei T, Mayer KFX, Gierl A, Frey M
    2018 - Phytochemistry, 224-233

    Abstract: 

    In the plant kingdom beta-glucosidases (BGLUs) of the glycosidase hydrolase family 1 have essential function in primary metabolism and are particularly employed in secondary metabolism. They are essential for activation in two-component defence systems based on stabilisation of reactive compounds by glycosylation. Based on de novo assembly we isolated and functionally characterised BGLUs expressed in leaves of Lamium galeobdolon (LgGLUs). LgGLU1 could be assigned to hydrolysis of the benzoxazinoid GDIBOA (2,4-dihydroxy-1,4-benzoxazin-3-one glucoside). Within the Lamiaceae L. galeobdolon is distinguished by the presence GDIBOA in addition to the more common iridoid harpagide. Although LgGLU1 proved to be promiscuous with respect to accepted substrates, harpagide hydrolysis was not detected. Benzoxazinoids are characteristic defence compounds of the Poales but are also found in some unrelated dicots. The benzoxazinoid specific BGLUs have recently been identified for the grasses maize, wheat, rye and the Ranunculaceae Consolida orientalis. All enzymes share a general substrate ambiguity but differ in detailed substrate pattern. The isolation of the second dicot GDIBOA glucosidase LgGLU1 allowed it to analyse the phylogenetic relation of the distinct BGLUs also within dicots. The data revealed long periods of independent sequence evolution before speciation.

  • The Genetic Transformation of Chlamydia pneumoniae.

    Shima K, Wanker M, Skilton RJ, Cutcliffe LT, Schnee C, Kohl TA, Niemann S, Geijo J, Klinger M, Timms P, Rattei T, Sachse K, Clarke IN, Rupp J
    2018 - mSphere, 5: in press

    Abstract: 

    We demonstrate the genetic transformation of using a plasmid shuttle vector system which generates stable transformants. The equine N16 isolate harbors the 7.5-kb plasmid pCpnE1. We constructed the plasmid vector pRSGFPCAT-Cpn containing a pCpnE1 backbone, plus the red-shifted green fluorescent protein (RSGFP), as well as the chloramphenicol acetyltransferase (CAT) gene used for the selection of plasmid shuttle vector-bearing transformants. Using the pRSGFPCAT-Cpn plasmid construct, expression of RSGFP in koala isolate LPCoLN was demonstrated. Furthermore, we discovered that the human cardiovascular isolate CV-6 and the human community-acquired pneumonia-associated IOL-207 could also be transformed with pRSGFPCAT-Cpn. In previous studies, it was shown that spp. cannot be transformed when the plasmid shuttle vector is constructed from a different plasmid backbone to the homologous species. Accordingly, we confirmed that pRSGFPCAT-Cpn could not cross the species barrier in plasmid-bearing and plasmid-free , , , , and However, contrary to our expectation, pRSGFPCAT-Cpn did transform Furthermore, pRSGFPCAT-Cpn did not recombine with the wild-type plasmid of Taken together, we provide for the first time an easy-to-handle transformation protocol for that results in stable transformants. In addition, the vector can cross the species barrier to , indicating the potential of horizontal pathogenic gene transfer via a plasmid. The absence of tools for the genetic manipulation of has hampered research into all aspects of its biology. In this study, we established a novel reproducible method for transformation based on a plasmid shuttle vector system. We constructed a plasmid backbone shuttle vector, pRSGFPCAT-Cpn. The construct expresses the red-shifted green fluorescent protein (RSGFP) fused to chloramphenicol acetyltransferase in transformants stably retained pRSGFPCAT-Cpn and expressed RSGFP in epithelial cells, even in the absence of chloramphenicol. The successful transformation in using pRSGFPCAT-Cpn will advance the field of chlamydial genetics and is a promising new approach to investigate gene functions in biology. In addition, we demonstrated that pRSGFPCAT-Cpn overcame the plasmid species barrier without the need for recombination with an endogenous plasmid, indicating the potential probability of horizontal chlamydial pathogenic gene transfer by plasmids between chlamydial species.

  • The Iceman's Last Meal Consisted of Fat, Wild Meat, and Cereals.

    Maixner F, Turaev D, Cazenave-Gassiot A, Janko M, Krause-Kyora B, Hoopmann MR, Kusebauch U, Sartain M, Guerriero G, O'Sullivan N, Teasdale M, Cipollini G, Paladin A, Mattiangeli V, Samadelli M, Tecchiati U, Putzer A, Palazoglu M, Meissen J, Lösch S, Rausch P, Baines JF, Kim BJ, An HJ, Gostner P, Egarter-Vigl E, Malfertheiner P, Keller A, Stark RW, Wenk M, Bishop D, Bradley DG, Fiehn O, Engstrand L, Moritz RL, Doble P, Franke A, Nebel A, Oeggl K, Rattei T, Grimm R, Zink A
    2018 - Curr. Biol., 14: 2348-2355.e9

    Abstract: 

    The history of humankind is marked by the constant adoption of new dietary habits affecting human physiology, metabolism, and even the development of nutrition-related disorders. Despite clear archaeological evidence for the shift from hunter-gatherer lifestyle to agriculture in Neolithic Europe [1], very little information exists on the daily dietary habits of our ancestors. By undertaking a complementary -omics approach combined with microscopy, we analyzed the stomach content of the Iceman, a 5,300-year-old European glacier mummy [2, 3]. He seems to have had a remarkably high proportion of fat in his diet, supplemented with fresh or dried wild meat, cereals, and traces of toxic bracken. Our multipronged approach provides unprecedented analytical depth, deciphering the nutritional habit, meal composition, and food-processing methods of this Copper Age individual.

  • Corrigendum: Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea.

    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F, Jarett J, Rivers AR, Eloe-Fadrosh EA, Tringe SG, Ivanova NN, Copeland A, Clum A, Becraft ED, Malmstrom RR, Birren B, Podar M, Bork P, Weinstock GM, Garrity GM, Dodsworth JA, Yooseph S, Sutton G, Glöckner FO, Gilbert JA, Nelson WC, Hallam SJ, Jungbluth SP, Ettema TJG, Tighe S, Konstantinidis KT, Liu WT, Baker BJ, Rattei T, Eisen JA, Hedlund B, McMahon KD, Fierer N, Knight R, Finn R, Cochrane G, Karsch-Mizrachi I, Tyson GW, Rinke C, Lapidus A, Meyer F, Yilmaz P, Parks DH, Eren AM, Schriml L, Banfield JF, Hugenholtz P, Woyke T
    2018 - Nat. Biotechnol., 7: 660
  • Oxytocin-like signaling in ants influences metabolic gene expression and locomotor activity.

    Liutkeviciute Z, Gil-Mansilla E, Eder T, Casillas-Pérez B, Di Giglio MG, Muratspahić E, Grebien F, Rattei T, Muttenthaler M, Cremer S, Gruber CW
    2018 - FASEB J., fj201800443

    Abstract: 

    Ants are emerging model systems to study cellular signaling because distinct castes possess different physiologic phenotypes within the same colony. Here we studied the functionality of inotocin signaling, an insect ortholog of mammalian oxytocin (OT), which was recently discovered in ants. In Lasius ants, we determined that specialization within the colony, seasonal factors, and physiologic conditions down-regulated the expression of the OT-like signaling system. Given this natural variation, we interrogated its function using RNAi knockdowns. Next-generation RNA sequencing of OT-like precursor knock-down ants highlighted its role in the regulation of genes involved in metabolism. Knock-down ants exhibited higher walking activity and increased self-grooming in the brood chamber. We propose that OT-like signaling in ants is important for regulating metabolic processes and locomotion.-Liutkevičiūtė, Z., Gil-Mansilla, E., Eder, T., Casillas-Pérez, B., Di Giglio, M. G., Muratspahić, E., Grebien, F., Rattei, T., Muttenthaler, M., Cremer, S., Gruber, C. W. Oxytocin-like signaling in ants influences metabolic gene expression and locomotor activity.

  • Characterization of a community-acquired-MRSA USA300 isolate from a river sample in Austria and whole genome sequence based comparison to a diverse collection of USA300 isolates.

    Lepuschitz S, Huhulescu S, Hyden P, Springer B, Rattei T, Allerberger F, Mach RL, Ruppitsch W
    2018 - Sci Rep, 1: 9467

    Abstract: 

    The increasing emergence of multi-resistant bacteria in healthcare settings, in the community and in the environment represents a major health threat worldwide. In 2016, we started a pilot project to investigate antimicrobial resistance in surface water. Bacteria were enriched, cultivated on selective chromogenic media and species identification was carried out by MALDI-TOF analysis. From a river in southern Austria a methicillin resistant Staphylococcus aureus (MRSA) was isolated. Whole genome sequence analysis identified the isolate as ST8, spa type t008, SCCmecIV, PVL and ACME positive, which are main features of CA-MRSA USA300. Whole genome based cgMLST of the water isolate and comparison to 18 clinical MRSA USA300 isolates from the Austrian national reference laboratory for coagulase positive staphylococci originating from 2004, 2005 and 2016 and sequences of 146 USA300 isolates arbitrarily retrieved from the Sequence Read Archive revealed a close relatedness to a clinical isolate from Austria. The presence of a CA-MRSA USA300 isolate in an aquatic environment might pose a public health risk by serving as a potential source of infection or a source for emergence of new pathogenic MRSA clones.

  • Interplay between gut microbiota metabolism and inflammation in HIV infection.

    Vázquez-Castellanos JF, Serrano-Villar S, Jiménez-Hernández N, Soto Del Rio MD, Gayo S, Rojo D, Ferrer M, Barbas C, Moreno S, Estrada V, Rattei T, Latorre A, Moya A, Gosalbes MJ
    2018 - ISME J, 8: 1964-1976

    Abstract: 

    HIV infection causes a disruption of gut-associated lymphoid tissue, driving a shift in the composition of gut microbiota. A deeper understanding of the metabolic changes and how they affect the interplay with the host is needed. Here, we assessed functional modifications of HIV-associated microbiota by combining metagenomic and metatranscriptomic analyses. The transcriptionally active microbiota was well-adapted to the inflamed environment, overexpressing pathways related to resistance to oxidative stress. Furthermore, gut inflammation was maintained by the Gram-negative nature of the HIV-associated microbiota and underexpression of anti-inflammatory processes, such as short chain fatty acid biosynthesis or indole production. We performed co-occurrence and metabolic network analyses that showed relevance in the microbiota structure of both taxonomic and metabolic HIV-associated biomarkers. The Bayesian network revealed the most determinant pathways for maintaining the structure stability of the bacterial community. In addition, we identified the taxa's contribution to metabolic activities and their interactions with host health.

  • Reef Invertebrate Viromics: Diversity, Host-Specificity & Functional Capacity.

    Laffy PW, Wood-Charlson EM, Turaev D, Jutz S, Pascelli C, Botté ES, Bell SC, Peirce T, Weynberg KD, van Oppen MJH, Rattei T, Webster NS
    2018 - Environ. Microbiol., in press

    Abstract: 

    Recent metagenomic analyses have revealed a high diversity of viruses in the pelagic ocean and uncovered clear habitat-specific viral distribution patterns. Conversely, similar insights into the composition, host-specificity and function of viruses associated with marine organisms have been limited by challenges associated with sampling and computational analysis. Here we performed targeted viromic analysis of six coral reef invertebrate species and their surrounding seawater to deliver taxonomic and functional profiles of viruses associated with reef organisms. Sponges and corals host species-specific viral assemblages with low sequence identity to known viral genomes. While core viral genes involved in capsid formation, tail structure and infection mechanisms were observed across all reef samples, auxiliary genes including those involved in herbicide resistance and viral pathogenesis pathways such as host immune suppression were differentially enriched in reef hosts. Utilising a novel OTU based assessment, we also show a prevalence of dsDNA viruses belonging to the Mimiviridae, Caudovirales and Phycodnaviridae in reef environments and further highlight the abundance of ssDNA viruses belonging to the Circoviridae, Parvoviridae, Bidnaviridae and Microviridae in reef invertebrates. These insights into coral reef viruses provide an important framework for future research into how viruses contribute to the health and evolution of reef organisms. This article is protected by copyright. All rights reserved.

  • Great Cause-Small Effect: Undeclared Genetically Engineered Orange Petunias Harbor an Inefficient Dihydroflavonol 4-Reductase.

    Haselmair-Gosch C, Miosic S, Nitarska D, Roth BL, Walliser B, Paltram R, Lucaciu RC, Eidenberger L, Rattei T, Olbricht K, Stich K, Halbwirth H
    2018 - Front Plant Sci, 149

    Abstract: 

    A recall campaign for commercial, orange flowering petunia varieties in spring 2017 caused economic losses worldwide. The orange varieties were identified as undeclared genetically engineered (GE)-plants, harboring a maize dihydroflavonol 4-reductase (), which was used in former scientific transgenic breeding attempts to enable formation of orange pelargonidin derivatives from the precursor dihydrokaempferol (DHK) in petunia. How and when the cDNA entered the commercial breeding process is unclear. We provide an in-depth analysis of three orange petunia varieties, released by breeders from three countries, with respect to their transgenic construct, transcriptomes, anthocyanin composition, and flavonoid metabolism at the level of selected enzymes and genes. The two possible sources of the cDNA in the undeclared GE-petunia can be discriminated by PCR. A special version of the gene, the type 2 allele, is present, which includes, at the 3'-end, an additional 144 bp segment from the non-viral transposable sequence, which does not add any functional advantage with respect to DFR activity. This unequivocally points at the first scientific GE-petunia from the 1980s as the source, which is further underpinned e.g., by the presence of specific restriction sites, parts of the untranslated sequences, and the same arrangement of the building blocks of the transformation plasmid used. Surprisingly, however, the GE-petunia cannot be distinguished from native red and blue varieties by their ability to convert DHK in common enzyme assays, as DHK is an inadequate substrate for both the petunia and maize DFR. Recombinant maize DFR underpins the low DHK acceptance, and, thus, the strikingly limited suitability of the protein for a transgenic approach for breeding pelargonidin-based flower color. The effect of single amino acid mutations on the substrate specificity of DFRs is demonstrated. Expression of the gene is generally lower than the petunia expression despite being under the control of the strong, constitutive p promoter. We show that a rare constellation in flavonoid metabolism-absence or strongly reduced activity of both flavonol synthase and B-ring hydroxylating enzymes-allows pelargonidin formation in the presence of DFRs with poor DHK acceptance.

  • Peatland Acidobacteria with a dissimilatory sulfur metabolism.

    Hausmann B, Pelikan C, Herbold CW, Köstlbacher S, Albertsen M, Eichorst SA, Glavina Del Rio T, Huemer M, Nielsen PH, Rattei T, Stingl U, Tringe SG, Trojan D, Wentrup C, Woebken D, Pester M, Loy A
    2018 - ISME J, in press

    Abstract: 

    Sulfur-cycling microorganisms impact organic matter decomposition in wetlands and consequently greenhouse gas emissions from these globally relevant environments. However, their identities and physiological properties are largely unknown. By applying a functional metagenomics approach to an acidic peatland, we recovered draft genomes of seven novel Acidobacteria species with the potential for dissimilatory sulfite (dsrAB, dsrC, dsrD, dsrN, dsrT, dsrMKJOP) or sulfate respiration (sat, aprBA, qmoABC plus dsr genes). Surprisingly, the genomes also encoded DsrL, which so far was only found in sulfur-oxidizing microorganisms. Metatranscriptome analysis demonstrated expression of acidobacterial sulfur-metabolism genes in native peat soil and their upregulation in diverse anoxic microcosms. This indicated an active sulfate respiration pathway, which, however, might also operate in reverse for dissimilatory sulfur oxidation or disproportionation as proposed for the sulfur-oxidizing Desulfurivibrio alkaliphilus. Acidobacteria that only harbored genes for sulfite reduction additionally encoded enzymes that liberate sulfite from organosulfonates, which suggested organic sulfur compounds as complementary energy sources. Further metabolic potentials included polysaccharide hydrolysis and sugar utilization, aerobic respiration, several fermentative capabilities, and hydrogen oxidation. Our findings extend both, the known physiological and genetic properties of Acidobacteria and the known taxonomic diversity of microorganisms with a DsrAB-based sulfur metabolism, and highlight new fundamental niches for facultative anaerobic Acidobacteria in wetlands based on exploitation of inorganic and organic sulfur molecules for energy conservation.

  • Corrigendum: Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea.

    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F, Jarett J, Rivers AR, Eloe-Fadrosh EA, Tringe SG, Ivanova NN, Copeland A, Clum A, Becraft ED, Malmstrom RR, Birren B, Podar M, Bork P, Weinstock GM, Garrity GM, Dodsworth JA, Yooseph S, Sutton G, Glöckner FO, Gilbert JA, Nelson WC, Hallam SJ, Jungbluth SP, Ettema TJG, Tighe S, Konstantinidis KT, Liu WT, Baker BJ, Rattei T, Eisen JA, Hedlund B, McMahon KD, Fierer N, Knight R, Finn R, Cochrane G, Karsch-Mizrachi I, Tyson GW, Rinke C, Lapidus A, Meyer F, Yilmaz P, Parks DH, Eren AM, Schriml L, Banfield JF, Hugenholtz P, Woyke T
    2018 - Nat. Biotechnol., 2: 196
  • Asian horses deepen the MSY phylogeny.

    Felkel S, Vogl C, Rigler D, Jagannathan V, Leeb T, Fries R, Neuditschko M, Rieder S, Velie B, Lindgren G, Rubin CJ, Schlötterer C, Rattei T, Brem G, Wallner B
    2018 - Anim. Genet., 1: 90-93

    Abstract: 

    Humans have shaped the population history of the horse ever since domestication about 5500 years ago. Comparative analyses of the Y chromosome can illuminate the paternal origin of modern horse breeds. This may also reveal different breeding strategies that led to the formation of extant breeds. Recently, a horse Y-chromosomal phylogeny of modern horses based on 1.46 Mb of the male-specific Y (MSY) was generated. We extended this dataset with 52 samples from five European, two American and seven Asian breeds. As in the previous study, almost all modern European horses fall into a crown group, connected via a few autochthonous Northern European lineages to the outgroup, the Przewalski's Horse. In total, we now distinguish 42 MSY haplotypes determined by 158 variants within domestic horses. Asian horses show much higher diversity than previously found in European breeds. The Asian breeds also introduce a deep split to the phylogeny, preliminarily dated to 5527 ± 872 years. We conclude that the deep splitting Asian Y haplotypes are remnants of a far more diverse ancient horse population, whose haplotypes were lost in other lineages.

  • Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments.

    Eichorst SA, Trojan D, Roux S, Herbold C, Rattei T, Woebken D
    2018 - Environ. Microbiol., 3: 1041-1063

    Abstract: 

    Members of the phylum Acidobacteria are abundant and ubiquitous across soils. We performed a large-scale comparative genome analysis spanning subdivisions 1, 3, 4, 6, 8 and 23 (n = 24) with the goal to identify features to help explain their prevalence in soils and understand their ecophysiology. Our analysis revealed that bacteriophage integration events along with transposable and mobile elements influenced the structure and plasticity of these genomes. Low- and high-affinity respiratory oxygen reductases were detected in multiple genomes, suggesting the capacity for growing across different oxygen gradients. Among many genomes, the capacity to use a diverse collection of carbohydrates, as well as inorganic and organic nitrogen sources (such as via extracellular peptidases), was detected - both advantageous traits in environments with fluctuating nutrient environments. We also identified multiple soil acidobacteria with the potential to scavenge atmospheric concentrations of H , now encompassing mesophilic soil strains within the subdivision 1 and 3, in addition to a previously identified thermophilic strain in subdivision 4. This large-scale acidobacteria genome analysis reveal traits that provide genomic, physiological and metabolic versatility, presumably allowing flexibility and versatility in the challenging and fluctuating soil environment.

  • Growth of Chlamydia pneumoniae Is Enhanced in Cells with Impaired Mitochondrial Function.

    Käding N, Kaufhold I, Muller C, Szaszák M, Shima K, Weinmaier T, Lomas R, Conesa A, Schmitt-Kopplin P, Rattei T, Rupp J
    2017 - Front Cell Infect Microbiol, 499

    Abstract: 

    Effective growth and replication of obligate intracellular pathogens depend on host cell metabolism. How this is connected to host cell mitochondrial function has not been studied so far. Recent studies suggest that growth of intracellular bacteria such as is enhanced in a low oxygen environment, arguing for a particular mechanistic role of the mitochondrial respiration in controlling intracellular progeny. Metabolic changes in infected epithelial cells were analyzed under normoxic (O ≈ 20%) and hypoxic conditions (O < 3%). We observed that infection of epithelial cells with under normoxia impaired mitochondrial function characterized by an enhanced mitochondrial membrane potential and ROS generation. Knockdown and mutation of the host cell ATP synthase resulted in an increased chlamydial replication already under normoxic conditions. As expected, mitochondrial hyperpolarization was observed in non-infected control cells cultured under hypoxic conditions, which was beneficial for growth. Taken together, functional and genetically encoded mitochondrial dysfunction strongly promotes intracellular growth of .

  • Genome sequencing of Chlamydia trachomatis serovars E and F reveals substantial genetic variation.

    Eder T, Kobus S, Stallmann S, Stepanow S, Köhrer K, Hegemann JH, Rattei T
    2017 - Pathog Dis, in press

    Abstract: 

    Chlamydia trachomatis (Ctr) is a bacterial pathogen that causes ocular, urogenital and lymph system infections in humans. It is highly abundant and among its serovars, E, F and D are most prevalent in sexually transmitted disease. However, the number of publicly available genome sequences of the serovars E and F, and thereby our knowledge about the molecular architecture of these serovars, is low. Here we sequenced the genomes of six E and F clinical isolates and one E lab strain, in order to study the genetic variance in these serovars. As observed before, the genomic variation inside the Ctr genomes is very low and the phylogenetic placement in comparison to publicly available genomes is as expected by ompA gene serotyping. However, we observed a large InDel carrying four to five open reading frames in one clinical E sample and in the E lab strain. We have also observed substantial variation on nucleotide and amino acid levels, especially in membrane proteins and secreted proteins. Furthermore, these two groups of proteins are also target for recombination events. One clinical F isolate was genetically heterogeneous and revealed the highest differences on nucleotide level in the pmpE gene.

  • Coral-associated viral communities show high levels of diversity and host auxiliary functions.

    Weynberg KD, Laffy PW, Wood-Charlson EM, Turaev D, Rattei T, Webster NS, van Oppen MJH
    2017 - PeerJ, e4054

    Abstract: 

    Stony corals (Scleractinia) are marine invertebrates that form the foundation and framework upon which tropical reefs are built. The coral animal associates with a diverse microbiome comprised of dinoflagellate algae and other protists, bacteria, archaea, fungi and viruses. Using a metagenomics approach, we analysed the DNA and RNA viral assemblages of seven coral species from the central Great Barrier Reef (GBR), demonstrating that tailed bacteriophages of the Caudovirales dominate across all species examined, and ssDNA viruses, notably the Microviridae, are also prevalent. Most sequences with matches to eukaryotic viruses were assigned to six viral families, including four Nucleocytoplasmic Large DNA Viruses (NCLDVs) families: Iridoviridae, Phycodnaviridae, Mimiviridae, and Poxviridae, as well as Retroviridae and Polydnaviridae. Contrary to previous findings, Herpesvirales were rare in these GBR corals. Sequences of a ssRNA virus with similarities to the dinornavirus, Heterocapsa circularisquama ssRNA virus of the Alvernaviridae that infects free-living dinoflagellates, were observed in three coral species. We also detected viruses previously undescribed from the coral holobiont, including a virus that targets fungi associated with the coral species Acropora tenuis. Functional analysis of the assembled contigs indicated a high prevalence of latency-associated genes in the coral-associated viral assemblages, several host-derived auxiliary metabolic genes (AMGs) for photosynthesis (psbA, psbD genes encoding the photosystem II D1 and D2 proteins respectively), as well as potential nematocyst toxins and antioxidants (genes encoding green fluorescent-like chromoprotein). This study expands the currently limited knowledge on coral-associated viruses by characterising viral composition and function across seven GBR coral species.

  • Peripheral blood vessels are a niche for blood-borne meningococci.

    Capel E, Barnier JP, Zomer AL, Bole-Feysot C, Nussbaumer T, Jamet A, Lécuyer H, Euphrasie D, Virion Z, Frapy E, Pélissier P, Join-Lambert O, Rattei T, Bourdoulous S, Nassif X, Coureuil M
    2017 - Virulence, 8: 1808-1819

    Abstract: 

    Neisseria meningitidis is the causative agent of cerebrospinal meningitis and that of a rapidly progressing fatal septic shock known as purpura fulminans. Meningococcemia is characterized by bacterial adhesion to human endothelial cells of the microvessels. Host specificity has hampered studies on the role of blood vessels colonization in N. meningitidis associated pathogenesis. In this work, using a humanized model of SCID mice allowing the study of bacterial adhesion to human cells in an in vivo context we demonstrate that meningococcal colonization of human blood vessels is a prerequisite to the establishment of sepsis and lethality. To identify the molecular pathways involved in bacterial virulence, we performed transposon insertion site sequencing (Tn-seq) in vivo. Our results demonstrate that 36% of the genes that are important for growth in the blood of mice are dispensable when bacteria colonize human blood vessels, suggesting that human endothelial cells lining the blood vessels are feeding niches for N. meningitidis in vivo. Altogether, our work proposes a new paradigm for meningococcal virulence in which colonization of blood vessels is associated with metabolic adaptation and sustained bacteremia responsible for sepsis and subsequent lethality.

  • Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software.

    Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, Gregor I, Majda S, Fiedler J, Dahms E, Bremges A, Fritz A, Garrido-Oter R, Jørgensen TS, Shapiro N, Blood PD, Gurevich A, Bai Y, Turaev D, DeMaere MZ, Chikhi R, Nagarajan N, Quince C, Meyer F, Balvočiūtė M, Hansen LH, Sørensen SJ, Chia BKH, Denis B, Froula JL, Wang Z, Egan R, Don Kang D, Cook JJ, Deltel C, Beckstette M, Lemaitre C, Peterlongo P, Rizk G, Lavenier D, Wu YW, Singer SW, Jain C, Strous M, Klingenberg H, Meinicke P, Barton MD, Lingner T, Lin HH, Liao YC, Silva GGZ, Cuevas DA, Edwards RA, Saha S, Piro VC, Renard BY, Pop M, Klenk HP, Göker M, Kyrpides NC, Woyke T, Vorholt JA, Schulze-Lefert P, Rubin EM, Darling AE, Rattei T, McHardy AC
    2017 - Nat. Methods, in press

    Abstract: 

    Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from ∼700 newly sequenced microorganisms and ∼600 novel viruses and plasmids and representing common experimental setups. Assembly and genome binning programs performed well for species represented by individual genomes but were substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below family level. Parameter settings markedly affected performance, underscoring their importance for program reproducibility. The CAMI results highlight current challenges but also provide a roadmap for software selection to answer specific research questions.

  • Sulfonolipids as novel metabolite markers of Alistipes and Odoribacter affected by high-fat diets.

    Walker A, Pfitzner B, Harir M, Schaubeck M, Calasan J, Heinzmann SS, Turaev D, Rattei T, Endesfelder D, Castell WZ, Haller D, Schmid M, Hartmann A, Schmitt-Kopplin P
    2017 - Sci Rep, 1: 11047

    Abstract: 

    The gut microbiota generates a huge pool of unknown metabolites, and their identification and characterization is a key challenge in metabolomics. However, there are still gaps on the studies of gut microbiota and their chemical structures. In this investigation, an unusual class of bacterial sulfonolipids (SLs) is detected in mouse cecum, which was originally found in environmental microbes. We have performed a detailed molecular level characterization of this class of lipids by combining high-resolution mass spectrometry and liquid chromatography analysis. Eighteen SLs that differ in their capnoid and fatty acid chain compositions were identified. The SL called "sulfobacin B" was isolated, characterized, and was significantly increased in mice fed with high-fat diets. To reveal bacterial producers of SLs, metagenome analysis was acquired and only two bacterial genera, i.e., Alistipes and Odoribacter, were revealed to be responsible for their production. This knowledge enables explaining a part of the molecular complexity introduced by microbes to the mammalian gastrointestinal tract and can be used as chemotaxonomic evidence in gut microbiota.

  • Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea.

    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F, Jarett J, Rivers AR, Eloe-Fadrosh EA, Tringe SG, Ivanova NN, Copeland A, Clum A, Becraft ED, Malmstrom RR, Birren B, Podar M, Bork P, Weinstock GM, Garrity GM, Dodsworth JA, Yooseph S, Sutton G, Glöckner FO, Gilbert JA, Nelson WC, Hallam SJ, Jungbluth SP, Ettema TJG, Tighe S, Konstantinidis KT, Liu WT, Baker BJ, Rattei T, Eisen JA, Hedlund B, McMahon KD, Fierer N, Knight R, Finn R, Cochrane G, Karsch-Mizrachi I, Tyson GW, Rinke C, Lapidus A, Meyer F, Yilmaz P, Parks DH, Eren AM, Schriml L, Banfield JF, Hugenholtz P, Woyke T
    2017 - Nat. Biotechnol., 8: 725-731

    Abstract: 

    We present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a Metagenome-Assembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Gene Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.

  • The desert plant Phoenix dactylifera closes stomata via nitrate-regulated SLAC1 anion channel.

    Müller HM, Schäfer N, Bauer H, Geiger D, Lautner S, Fromm J, Riederer M, Bueno A, Nussbaumer T, Mayer K, Alquraishi SA, Alfarhan AH, Neher E, Al-Rasheid KAS, Ache P, Hedrich R
    2017 - New Phytol., 1: 150-162

    Abstract: 

    Date palm Phoenix dactylifera is a desert crop well adapted to survive and produce fruits under extreme drought and heat. How are palms under such harsh environmental conditions able to limit transpirational water loss? Here, we analysed the cuticular waxes, stomata structure and function, and molecular biology of guard cells from P. dactylifera. To understand the stomatal response to the water stress phytohormone of the desert plant, we cloned the major elements necessary for guard cell fast abscisic acid (ABA) signalling and reconstituted this ABA signalosome in Xenopus oocytes. The PhoenixSLAC1-type anion channel is regulated by ABA kinase PdOST1. Energy-dispersive X-ray analysis (EDXA) demonstrated that date palm guard cells release chloride during stomatal closure. However, in Cl medium, PdOST1 did not activate the desert plant anion channel PdSLAC1 per se. Only when nitrate was present at the extracellular face of the anion channel did the OST1-gated PdSLAC1 open, thus enabling chloride release. In the presence of nitrate, ABA enhanced and accelerated stomatal closure. Our findings indicate that, in date palm, the guard cell osmotic motor driving stomatal closure uses nitrate as the signal to open the major anion channel SLAC1. This initiates guard cell depolarization and the release of anions together with potassium.

  • Time-course expression QTL-atlas of the global transcriptional response of wheat to Fusarium graminearum.

    Samad-Zamini M, Schweiger W, Nussbaumer T, Mayer KFX, Buerstmayr H
    2017 - Plant Biotechnol. J., 11: 1453-1464

    Abstract: 

    Fusarium head blight is a devastating disease of small grain cereals such as bread wheat (Triticum aestivum). The pathogen switches from a biotrophic to a nectrotrophic lifestyle in course of disease development forcing its host to adapt its defence strategies. Using a genetical genomics approach, we illustrate genome-wide reconfigurations of genetic control over transcript abundances between two decisive time points after inoculation with the causative pathogen Fusarium graminearum. Whole transcriptome measurements have been recorded for 163 lines of a wheat doubled haploid population segregating for several resistance genes yielding 15 552 at 30 h and 15 888 eQTL at 50 h after inoculation. The genetic map saturated with transcript abundance-derived markers identified of a novel QTL on chromosome 6A, besides the previously reported QTL Fhb1 and Qfhs.ifa-5A. We find a highly different distribution of eQTL between time points with about 40% of eQTL being unique for the respective assessed time points. But also for more than 20% of genes governed by eQTL at either time point, genetic control changes in time. These changes are reflected in the dynamic compositions of three major regulatory hotspots on chromosomes 2B, 4A and 5A. In particular, control of defence-related biological mechanisms concentrated in the hotspot at 4A shift to hotspot 2B as the disease progresses. Hotspots do not colocalize with phenotypic QTL, and within their intervals no higher than expected number of eQTL was detected. Thus, resistance conferred by either QTL is mediated by few or single genes.

  • Natural haplotypes of non-coding sequences fine-tune flowering time in ambient spring temperatures in Arabidopsis.

    Lutz U, Nussbaumer T, Spannagl M, Diener J, Mayer KF, Schwechheimer C
    2017 - Elife, in press

    Abstract: 

    Cool ambient temperatures are major cues determining flowering time in spring. The mechanisms promoting or delaying flowering in response to ambient temperature changes are only beginning to be understood. In , () regulates flowering in the ambient temperature range and is transcribed and alternatively spliced in a temperature-dependent manner. We identify polymorphic promoter and intronic sequences required for expression and splicing. In transgenic experiments covering 69% of the available sequence variation in two distinct sites, we show that variation in the abundance of the splice form strictly correlate (R = 0.94) with flowering time over an extended vegetative period. The polymorphisms lead to changes in expression (PRO2+) but may also affect intron 1 splicing (INT6+). This information could serve to buffer the anticipated negative effects on agricultural systems and flowering that may occur during climate change.

  • Variant profiling of evolving prokaryotic populations.

    Zojer M, Schuster LN, Schulz F, Pfundner A, Horn M, Rattei T
    2017 - PeerJ, e2997

    Abstract: 

    Genomic heterogeneity of bacterial species is observed and studied in experimental evolution experiments and clinical diagnostics, and occurs as micro-diversity of natural habitats. The challenge for genome research is to accurately capture this heterogeneity with the currently used short sequencing reads. Recent advances in NGS technologies improved the speed and coverage and thus allowed for deep sequencing of bacterial populations. This facilitates the quantitative assessment of genomic heterogeneity, including low frequency alleles or haplotypes. However, false positive variant predictions due to sequencing errors and mapping artifacts of short reads need to be prevented. We therefore created VarCap, a workflow for the reliable prediction of different types of variants even at low frequencies. In order to predict SNPs, InDels and structural variations, we evaluated the sensitivity and accuracy of different software tools using synthetic read data. The results suggested that the best sensitivity could be reached by a union of different tools, however at the price of increased false positives. We identified possible reasons for false predictions and used this knowledge to improve the accuracy by post-filtering the predicted variants according to properties such as frequency, coverage, genomic environment/localization and co-localization with other variants. We observed that best precision was achieved by using an intersection of at least two tools per variant. This resulted in the reliable prediction of variants above a minimum relative abundance of 2%. VarCap is designed for being routinely used within experimental evolution experiments or for clinical diagnostics. The detected variants are reported as frequencies within a VCF file and as a graphical overview of the distribution of the different variant/allele/haplotype frequencies. The source code of VarCap is available at https://github.com/ma2o/VarCap. In order to provide this workflow to a broad community, we implemeted VarCap on a Galaxy webserver, which is accessible at http://galaxy.csb.univie.ac.at.

  • Viruses comprise an extensive pool of mobile genetic elements in eukaryote cell cultures and human clinical samples.

    Thannesberger J, Hellinger HJ, Klymiuk I, Kastner MT, Rieder FJ, Schneider M, Fister S, Lion T, Kosulin K, Laengle J, Bergmann M, Rattei T, Steininger C
    2017 - FASEB J., in press

    Abstract: 

    Viruses shape a diversity of ecosystems by modulating their microbial, eukaryotic, or plant host metabolism. The complexity of virus-host interaction networks is progressively fathomed by novel metagenomic approaches. By using a novel metagenomic method, we explored the virome in mammalian cell cultures and clinical samples to identify an extensive pool of mobile genetic elements in all of these ecosystems. Despite aseptic treatment, cell cultures harbored extensive and diverse phage populations with a high abundance of as yet unknown and uncharacterized viruses (viral dark matter). Unknown phages also predominated in the oropharynx and urine of healthy individuals and patients infected with cytomegalovirus despite demonstration of active cytomegalovirus replication. The novelty of viral sequences correlated primarily with the individual evaluated, whereas relative abundance of encoded protein functions was associated with the ecologic niches probed. Together, these observations demonstrate the extensive presence of viral dark matter in human and artificial ecosystems.-Thannesberger, J., Hellinger, H.-J., Klymiuk, I., Kastner, M.-T., Rieder, F. J. J., Schneider, M., Fister, S., Lion, T., Kosulin, K., Laengle, J., Bergmann, M., Rattei, T., Steininger, C. Viruses comprise an extensive pool of mobile genetic elements in eukaryote cell cultures and human clinical samples.

  • Lifestyle and Horizontal Gene Transfer-Mediated Evolution of Mucispirillum schaedleri, a Core Member of the Murine Gut Microbiota.

    Loy A, Pfann C, Steinberger M, Hanson B, Herp S, Brugiroux S, Gomes Neto JC, Boekschoten MV, Schwab C, Urich T, Ramer-Tait AE, Rattei T, Stecher B, Berry D
    2017 - mSystems, 1: in press

    Abstract: 

    Mucispirillum schaedleri is an abundant inhabitant of the intestinal mucus layer of rodents and other animals and has been suggested to be a pathobiont, a commensal that plays a role in disease. In order to gain insights into its lifestyle, we analyzed the genome and transcriptome of M. schaedleri ASF 457 and performed physiological experiments to test traits predicted by its genome. Although described as a mucus inhabitant, M. schaedleri has limited capacity for degrading host-derived mucosal glycans and other complex polysaccharides. Additionally, M. schaedleri reduces nitrate and expresses systems for scavenging oxygen and reactive oxygen species in vivo, which may account for its localization close to the mucosal tissue and expansion during inflammation. Also of note, M. schaedleri harbors a type VI secretion system and putative effector proteins and can modify gene expression in mucosal tissue, suggesting intimate interactions with its host and a possible role in inflammation. The M. schaedleri genome has been shaped by extensive horizontal gene transfer, primarily from intestinal Epsilon- and Deltaproteobacteria, indicating that horizontal gene transfer has played a key role in defining its niche in the gut ecosystem. IMPORTANCE Shifts in gut microbiota composition have been associated with intestinal inflammation, but it remains unclear whether inflammation-associated bacteria are commensal or detrimental to their host. Here, we studied the lifestyle of the gut bacterium Mucispirillum schaedleri, which is associated with inflammation in widely used mouse models. We found that M. schaedleri has specialized systems to handle oxidative stress during inflammation. Additionally, it expresses secretion systems and effector proteins and can modify the mucosal gene expression of its host. This suggests that M. schaedleri undergoes intimate interactions with its host and may play a role in inflammation. The insights presented here aid our understanding of how commensal gut bacteria may be involved in altering susceptibility to disease.

  • Development of a human vasopressin V1a-receptor antagonist from an evolutionary-related insect neuropeptide.

    Di Giglio MG, Muttenthaler M, Harpsøe K, Liutkeviciute Z, Keov P, Eder T, Rattei T, Arrowsmith S, Wray S, Marek A, Elbert T, Alewood PF, Gloriam DE, Gruber CW
    2017 - Sci Rep, 41002

    Abstract: 

    Characterisation of G protein-coupled receptors (GPCR) relies on the availability of a toolbox of ligands that selectively modulate different functional states of the receptors. To uncover such molecules, we explored a unique strategy for ligand discovery that takes advantage of the evolutionary conservation of the 600-million-year-old oxytocin/vasopressin signalling system. We isolated the insect oxytocin/vasopressin orthologue inotocin from the black garden ant (Lasius niger), identified and cloned its cognate receptor and determined its pharmacological properties on the insect and human oxytocin/vasopressin receptors. Subsequently, we identified a functional dichotomy: inotocin activated the insect inotocin and the human vasopressin V1b receptors, but inhibited the human V1aR. Replacement of Arg8 of inotocin by D-Arg8 led to a potent, stable and competitive V1aR-antagonist ([D-Arg8]-inotocin) with a 3,000-fold binding selectivity for the human V1aR over the other three subtypes, OTR, V1bR and V2R. The Arg8/D-Arg8 ligand-pair was further investigated to gain novel insights into the oxytocin/vasopressin peptide-receptor interaction, which led to the identification of key residues of the receptors that are important for ligand functionality and selectivity. These observations could play an important role for development of oxytocin/vasopressin receptor modulators that would enable clear distinction of the physiological and pathological responses of the individual receptor subtypes.

  • Unraveling the microbial processes of black band disease in corals through integrated genomics.

    Sato Y, Ling EY, Turaev D, Laffy P, Weynberg KD, Rattei T, Willis BL, Bourne DG
    2017 - Sci Rep, 40455

    Abstract: 

    Coral disease outbreaks contribute to the ongoing degradation of reef ecosystems, however, microbial mechanisms underlying the onset and progression of most coral diseases are poorly understood. Black band disease (BBD) manifests as a cyanobacterial-dominated microbial mat that destroys coral tissues as it rapidly spreads over coral colonies. To elucidate BBD pathogenesis, we apply a comparative metagenomic and metatranscriptomic approach to identify taxonomic and functional changes within microbial lesions during in-situ development of BBD from a comparatively benign stage termed cyanobacterial patches. Results suggest that photosynthetic CO2-fixation in Cyanobacteria substantially enhances productivity of organic matter within the lesion during disease development. Photosynthates appear to subsequently promote sulfide-production by Deltaproteobacteria, facilitating the major virulence factor of BBD. Interestingly, our metagenome-enabled transcriptomic analysis reveals that BBD-associated cyanobacteria have a putative mechanism that enables them to adapt to higher levels of hydrogen sulfide within lesions, underpinning the pivotal roles of the dominant cyanobacterium within the polymicrobial lesions during the onset of BBD. The current study presents sequence-based evidence derived from whole microbial communities that unravel the mechanism of development and progression of BBD.

  • PGSB/MIPS PlantsDB Database Framework for the Integration and Analysis of Plant Genome Data.

    Spannagl M, Nussbaumer T, Bader K, Gundlach H, Mayer KF
    2017 - Methods Mol. Biol., 33-44

    Abstract: 

    Plant Genome and Systems Biology (PGSB), formerly Munich Institute for Protein Sequences (MIPS) PlantsDB, is a database framework for the integration and analysis of plant genome data, developed and maintained for more than a decade now. Major components of that framework are genome databases and analysis resources focusing on individual (reference) genomes providing flexible and intuitive access to data. Another main focus is the integration of genomes from both model and crop plants to form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny). Data exchange and integrated search functionality with/over many plant genome databases is provided within the transPLANT project.

  • The origin and evolution of cell types.

    Arendt D, Musser JM, Baker CV, Bergman A, Cepko C, Erwin DH, Pavličev M, Schlosser G, Widder S, Laubichler MD, Wagner GP
    2016 - Nat. Rev. Genet., 12: 744-757

    Abstract: 

    Cell types are the basic building blocks of multicellular organisms and are extensively diversified in animals. Despite recent advances in characterizing cell types, classification schemes remain ambiguous. We propose an evolutionary definition of a cell type that allows cell types to be delineated and compared within and between species. Key to cell type identity are evolutionary changes in the 'core regulatory complex' (CoRC) of transcription factors, that make emergent sister cell types distinct, enable their independent evolution and regulate cell type-specific traits termed apomeres. We discuss the distinction between developmental and evolutionary lineages, and present a roadmap for future research.

  • A distinct microbiota composition is associated with protection from food allergy in an oral mouse immunization model.

    Diesner SC, Bergmayr C, Pfitzner B, Assmann V, Krishnamurthy D, Starkl P, Endesfelder D, Rothballer M, Welzl G, Rattei T, Eiwegger T, Szépfalusi Z, Fehrenbach H, Jensen-Jarolim E, Hartmann A, Pali-Schöll I, Untersmayr E
    2016 - Clin. Immunol., 10-18

    Abstract: 

    In our mouse model, gastric acid-suppression is associated with antigen-specific IgE and anaphylaxis development. We repeatedly observed non-responder animals protected from food allergy. Here, we aimed to analyse reasons for this protection. Ten out of 64 mice, subjected to oral ovalbumin (OVA) immunizations under gastric acid-suppression, were non-responders without OVA-specific IgE or IgG1 elevation, indicating protection from allergy. In these non-responders, allergen challenges confirmed reduced antigen uptake and lack of anaphylactic symptoms, while in allergic mice high levels of mouse mast-cell protease-1 and a body temperature reduction, indicative for anaphylaxis, were determined. Upon OVA stimulation, significantly lower IL-4, IL-5, IL-10 and IL-13 levels were detected in non-responders, while IL-22 was significantly higher. Comparison of fecal microbiota revealed differences of bacterial communities on single bacterial Operational-Taxonomic-Unit level between the groups, indicating protection from food allergy being associated with a distinct microbiota composition in a non-responding phenotype in this mouse model.

  • NVT: a fast and simple tool for the assessment of RNA-seq normalization strategies.

    Eder T, Grebien F, Rattei T
    2016 - Bioinformatics, in press

    Abstract: 

    Measuring differential gene expression is a common task in the analysis of RNA-Seq data. To identify differentially expressed genes between two samples, it is crucial to normalize the datasets. While multiple normalization methods are available, all of them are based on certain assumptions that may or may not be suitable for the type of data they are applied on. Researchers therefore need to select an adequate normalization strategy for each RNA-Seq experiment. This selection includes exploration of different normalization methods as well as their comparison. Methods that agree with each other most likely represent realistic assumptions under the particular experimental conditions.
    We developed the NVT package, which provides a fast and simple way to analyze and evaluate multiple normalization methods via visualization and representation of correlation values, based on a user-defined set of uniformly expressed genes.
    The R package is freely available under https://github.com/Edert/NVT CONTACT: thomas.rattei@univie.ac.atSupplementary information: Supplementary data are available at Bioinformatics online.

  • Comprehensive Identification of Meningococcal Genes and Small Noncoding RNAs Required for Host Cell Colonization.

    Capel E, Zomer AL, Nussbaumer T, Bole C, Izac B, Frapy E, Meyer J, Bouzinba-Ségard H, Bille E, Jamet A, Cavau A, Letourneur F, Bourdoulous S, Rattei T, Nassif X, Coureuil M
    2016 - mBio, 4: in press

    Abstract: 

    Neisseria meningitidis is a leading cause of bacterial meningitis and septicemia, affecting infants and adults worldwide. N. meningitidis is also a common inhabitant of the human nasopharynx and, as such, is highly adapted to its niche. During bacteremia, N. meningitidis gains access to the blood compartment, where it adheres to endothelial cells of blood vessels and causes dramatic vascular damage. Colonization of the nasopharyngeal niche and communication with the different human cell types is a major issue of the N. meningitidis life cycle that is poorly understood. Here, highly saturated random transposon insertion libraries of N. meningitidis were engineered, and the fitness of mutations during routine growth and that of colonization of endothelial and epithelial cells in a flow device were assessed in a transposon insertion site sequencing (Tn-seq) analysis. This allowed the identification of genes essential for bacterial growth and genes specifically required for host cell colonization. In addition, after having identified the small noncoding RNAs (sRNAs) located in intergenic regions, the phenotypes associated with mutations in those sRNAs were defined. A total of 383 genes and 8 intergenic regions containing sRNA candidates were identified to be essential for growth, while 288 genes and 33 intergenic regions containing sRNA candidates were found to be specifically required for host cell colonization.
    Meningococcal meningitis is a common cause of meningitis in infants and adults. Neisseria meningitidis (meningococcus) is also a commensal bacterium of the nasopharynx and is carried by 3 to 30% of healthy humans. Under some unknown circumstances, N. meningitidis is able to invade the bloodstream and cause either meningitis or a fatal septicemia known as purpura fulminans. The onset of symptoms is sudden, and death can follow within hours. Although many meningococcal virulence factors have been identified, the mechanisms that allow the bacterium to switch from the commensal to pathogen state remain unknown. Therefore, we used a Tn-seq strategy coupled to high-throughput DNA sequencing technologies to find genes for proteins used by N. meningitidis to specifically colonize epithelial cells and primary brain endothelial cells. We identified 383 genes and 8 intergenic regions containing sRNAs essential for growth and 288 genes and 33 intergenic regions containing sRNAs required specifically for host cell colonization.

  • ConsPred: a rule-based (re-)annotation framework for prokaryotic genomes.

    Weinmaier T, Platzer A, Frank J, Hellinger HJ, Tischler P, Rattei T
    2016 - Bioinformatics, in press

    Abstract: 

    The rapidly growing number of available prokaryotic genome sequences requires fully automated and high-quality software solutions for their initial and re-annotation. Here we present ConsPred, a prokaryotic genome annotation framework that performs intrinsic gene predictions, homology searches, predictions of non-coding genes as well as CRISPR repeats and integrates all evidence into a consensus annotation. ConsPred achieves comprehensive, high-quality annotations based on rules and priorities, similar to decision-making in manual curation and avoids conflicting predictions. Parameters controlling the annotation process are configurable by the user. ConsPred has been used in the institutions of the authors for longer than 5 years and can easily be extended and adapted to specific needs.
    The ConsPred algorithm for producing a consensus from the varying scores of multiple gene prediction programs approaches manual curation in accuracy. Its rule-based approach for choosing final predictions avoids overriding previous manual curations.
    ConsPred is implemented in Java, Perl and Shell and is freely available under the Creative Commons license as a stand-alone in-house pipeline or as an Amazon Machine Image for cloud computing, see https://sourceforge.net/projects/conspred/.
    thomas.rattei@univie.ac.atSupplementary information: Supplementary data are available at Bioinformatics online.

  • HoloVir: A Workflow for Investigating the Diversity and Function of Viruses in Invertebrate Holobionts.

    Laffy PW, Wood-Charlson EM, Turaev D, Weynberg KD, Botté ES, van Oppen MJ, Webster NS, Rattei T
    2016 - Front Microbiol, 822

    Abstract: 

    Abundant bioinformatics resources are available for the study of complex microbial metagenomes, however their utility in viral metagenomics is limited. HoloVir is a robust and flexible data analysis pipeline that provides an optimized and validated workflow for taxonomic and functional characterization of viral metagenomes derived from invertebrate holobionts. Simulated viral metagenomes comprising varying levels of viral diversity and abundance were used to determine the optimal assembly and gene prediction strategy, and multiple sequence assembly methods and gene prediction tools were tested in order to optimize our analysis workflow. HoloVir performs pairwise comparisons of single read and predicted gene datasets against the viral RefSeq database to assign taxonomy and additional comparison to phage-specific and cellular markers is undertaken to support the taxonomic assignments and identify potential cellular contamination. Broad functional classification of the predicted genes is provided by assignment of COG microbial functional category classifications using EggNOG and higher resolution functional analysis is achieved by searching for enrichment of specific Swiss-Prot keywords within the viral metagenome. Application of HoloVir to viral metagenomes from the coral Pocillopora damicornis and the sponge Rhopaloeides odorabile demonstrated that HoloVir provides a valuable tool to characterize holobiont viral communities across species, environments, or experiments.

  • Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies.

    Güllert S, Fischer MA, Turaev D, Noebauer B, Ilmberger N, Wemheuer B, Alawi M, Rattei T, Daniel R, Schmitz RA, Grundhoff A, Streit WR
    2016 - Biotechnol Biofuels, 121

    Abstract: 

    The diverse microbial communities in agricultural biogas fermenters are assumed to be well adapted for the anaerobic transformation of plant biomass to methane. Compared to natural systems, biogas reactors are limited in their hydrolytic potential. The reasons for this are not understood.
    In this paper, we show that a typical industrial biogas reactor fed with maize silage, cow manure, and chicken manure has relatively lower hydrolysis rates compared to feces samples from herbivores. We provide evidence that on average, 2.5 genes encoding cellulolytic GHs/Mbp were identified in the biogas fermenter compared to 3.8 in the elephant feces and 3.2 in the cow rumen data sets. The ratio of genes coding for cellulolytic GH enzymes affiliated with the Firmicutes versus the Bacteroidetes was 2.8:1 in the biogas fermenter compared to 1:1 in the elephant feces and 1.4:1 in the cow rumen sample. Furthermore, RNA-Seq data indicated that highly transcribed cellulases in the biogas fermenter were four times more often affiliated with the Firmicutes compared to the Bacteroidetes, while an equal distribution of these enzymes was observed in the elephant feces sample.
    Our data indicate that a relatively lower abundance of bacteria affiliated with the phylum of Bacteroidetes and, to some extent, Fibrobacteres is associated with a decreased richness of predicted lignocellulolytic enzymes in biogas fermenters. This difference can be attributed to a partial lack of genes coding for cellulolytic GH enzymes derived from bacteria which are affiliated with the Fibrobacteres and, especially, the Bacteroidetes. The partial deficiency of these genes implies a potentially important limitation in the biogas fermenter with regard to the initial hydrolysis of biomass. Based on these findings, we speculate that increasing the members of Bacteroidetes and Fibrobacteres in biogas fermenters will most likely result in an increased hydrolytic performance.

  • Suppressed recombination and unique candidate genes in the divergent haplotype encoding Fhb1, a major Fusarium head blight resistance locus in wheat.

    Schweiger W, Steiner B, Vautrin S, Nussbaumer T, Siegwart G, Zamini M, Jungreithmeier F, Gratl V, Lemmens M, Mayer KF, Bérgès H, Adam G, Buerstmayr H
    2016 - Theor. Appl. Genet., 8: 1607-23

    Abstract: 

    Fine mapping and sequencing revealed 28 genes in the non-recombining haplotype containing Fhb1 . Of these, only a GDSL lipase gene shows a pathogen-dependent expression pattern. Fhb1 is a prominent Fusarium head blight resistance locus of wheat, which has been successfully introgressed in adapted breeding material, where it confers a significant increase in overall resistance to the causal pathogen Fusarium graminearum and the fungal virulence factor and mycotoxin deoxynivalenol. The Fhb1 region has been resolved for the susceptible wheat reference genotype Chinese Spring, yet the causal gene itself has not been identified in resistant cultivars. Here, we report the establishment of a 1 Mb contig embracing Fhb1 in the donor line CM-82036. Sequencing revealed that the region of Fhb1 deviates from the Chinese Spring reference in DNA size and gene content, which explains the repressed recombination at the locus in the performed fine mapping. Differences in genes expression between near-isogenic lines segregating for Fhb1 challenged with F. graminearum or treated with mock were investigated in a time-course experiment by RNA sequencing. Several candidate genes were identified, including a pathogen-responsive GDSL lipase absent in susceptible lines. The sequence of the Fhb1 region, the resulting list of candidate genes, and near-diagnostic KASP markers for Fhb1 constitute a valuable resource for breeding and further studies aiming to identify the gene(s) responsible for F. graminearum and deoxynivalenol resistance.

  • High definition for systems biology of microbial communities: metagenomics gets genome-centric and strain-resolved.

    2016 - Curr. Opin. Biotechnol., 174-181

    Abstract: 

    The systems biology of microbial communities, organismal communities inhabiting all ecological niches on earth, has in recent years been strongly facilitated by the rapid development of experimental, sequencing and data analysis methods. Novel experimental approaches and binning methods in metagenomics render the semi-automatic reconstructions of near-complete genomes of uncultivable bacteria possible, while advances in high-resolution amplicon analysis allow for efficient and less biased taxonomic community characterization. This will also facilitate predictive modeling approaches, hitherto limited by the low resolution of metagenomic data. In this review, we pinpoint the most promising current developments in metagenomics. They facilitate microbial systems biology towards a systemic understanding of mechanisms in microbial communities with scopes of application in many areas of our daily life.

  • Transcriptomic and Proteomic Analysis of Arion vulgaris-Proteins for Probably Successful Survival Strategies?

    Bulat T, Smidak R, Sialana FJ, Jung G, Rattei T, Bilban M, Sattmann H, Lubec G, Aradska J
    2016 - PloS one, 3: e0150614

    Abstract: 

    The Spanish slug, Arion vulgaris, is considered one of the hundred most invasive species in Central Europe. The immense and very successful adaptation and spreading of A. vulgaris suggest that it developed highly effective mechanisms to deal with infections and natural predators. Current transcriptomic and proteomic studies on gastropods have been restricted mainly to marine and freshwater gastropods. No transcriptomic or proteomic study on A. vulgaris has been carried out so far, and in the current study, the first transcriptomic database from adult specimen of A. vulgaris is reported. To facilitate and enable proteomics in this non-model organism, a mRNA-derived protein database was constructed for protein identification. A gel-based proteomic approach was used to obtain the first generation of a comprehensive slug mantle proteome. A total of 2128 proteins were unambiguously identified; 48 proteins represent novel proteins with no significant homology in NCBI non-redundant database. Combined transcriptomic and proteomic analysis revealed an extensive repertoire of novel proteins with a role in innate immunity including many associated pattern recognition, effector proteins and cytokine-like proteins. The number and diversity in gene families encoding lectins point to a complex defense system, probably as a result of adaptation to a pathogen-rich environment. These results are providing a fundamental and important resource for subsequent studies on molluscs as well as for putative antimicrobial compounds for drug discovery and biomedical applications.

  • The 5300-year-old Helicobacter pylori genome of the Iceman.

    Maixner F, Krause-Kyora B, Turaev D, Herbig A, Hoopmann MR, Hallows JL, Kusebauch U, Vigl EE, Malfertheiner P, Megraud F, O'Sullivan N, Cipollini G, Coia V, Samadelli M, Engstrand L, Linz B, Moritz RL, Grimm R, Krause J, Nebel A, Moodley Y, Rattei T, Zink A
    2016 - Science, 6269: 162-5

    Abstract: 

    The stomach bacterium Helicobacter pylori is one of the most prevalent human pathogens. It has dispersed globally with its human host, resulting in a distinct phylogeographic pattern that can be used to reconstruct both recent and ancient human migrations. The extant European population of H. pylori is known to be a hybrid between Asian and African bacteria, but there exist different hypotheses about when and where the hybridization took place, reflecting the complex demographic history of Europeans. Here, we present a 5300-year-old H. pylori genome from a European Copper Age glacier mummy. The "Iceman" H. pylori is a nearly pure representative of the bacterial population of Asian origin that existed in Europe before hybridization, suggesting that the African population arrived in Europe within the past few thousand years.

  • EffectiveDB-updates and novel features for a better annotation of bacterial secreted proteins and Type III, IV, VI secretion systems.

    Eichinger V, Nussbaumer T, Platzer A, Jehl MA, Arnold R, Rattei T
    2016 - Nucleic Acids Res., D669-74

    Abstract: 

    Protein secretion systems play a key role in the interaction of bacteria and hosts. EffectiveDB (http://effectivedb.org) contains pre-calculated predictions of bacterial secreted proteins and of intact secretion systems. Here we describe a major update of the database, which was previously featured in the NAR Database Issue. EffectiveDB bundles various tools to recognize Type III secretion signals, conserved binding sites of Type III chaperones, Type IV secretion peptides, eukaryotic-like domains and subcellular targeting signals in the host. Beyond the analysis of arbitrary protein sequence collections, the new release of EffectiveDB also provides a 'genome-mode', in which protein sequences from nearly complete genomes or metagenomic bins can be screened for the presence of three important secretion systems (Type III, IV, VI). EffectiveDB contains pre-calculated predictions for currently 1677 bacterial genomes from the EggNOG 4.0 database and for additional bacterial genomes from NCBI RefSeq. The new, user-friendly and informative web portal offers a submission tool for running the EffectiveDB prediction tools on user-provided data.

  • probeBase-an online resource for rRNA-targeted oligonucleotide probes and primers: new features 2016.

    Greuter D, Loy A, Horn M, Rattei T
    2016 - Nucleic Acids Res., D586-9

    Abstract: 

    probeBase http://www.probebase.net is a manually maintained and curated database of rRNA-targeted oligonucleotide probes and primers. Contextual information and multiple options for evaluating in silico hybridization performance against the most recent rRNA sequence databases are provided for each oligonucleotide entry, which makes probeBase an important and frequently used resource for microbiology research and diagnostics. Here we present a major update of probeBase, which was last featured in the NAR Database Issue 2007. This update describes a complete remodeling of the database architecture and environment to accommodate computationally efficient access. Improved search functions, sequence match tools and data output now extend the opportunities for finding suitable hierarchical probe sets that target an organism or taxon at different taxonomic levels. To facilitate the identification of complementary probe sets for organisms represented by short rRNA sequence reads generated by amplicon sequencing or metagenomic analysis with next generation sequencing technologies such as Illumina and IonTorrent, we introduce a novel tool that recovers surrogate near full-length rRNA sequences for short query sequences and finds matching oligonucleotides in probeBase.

  • eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences.

    Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, Jensen LJ, von Mering C, Bork P
    2016 - Nucleic Acids Res., D286-93

    Abstract: 

    eggNOG is a public resource that provides Orthologous Groups (OGs) of proteins at different taxonomic levels, each with integrated and summarized functional annotations. Developments since the latest public release include changes to the algorithm for creating OGs across taxonomic levels, making nested groups hierarchically consistent. This allows for a better propagation of functional terms across nested OGs and led to the novel annotation of 95 890 previously uncharacterized OGs, increasing overall annotation coverage from 67% to 72%. The functional annotations of OGs have been expanded to also provide Gene Ontology terms, KEGG pathways and SMART/Pfam domains for each group. Moreover, eggNOG now provides pairwise orthology relationships within OGs based on analysis of phylogenetic trees. We have also incorporated a framework for quickly mapping novel sequences to OGs based on precomputed HMM profiles. Finally, eggNOG version 4.5 incorporates a novel data set spanning 2605 viral OGs, covering 5228 proteins from 352 viral proteomes. All data are accessible for bulk downloading, as a web-service, and through a completely redesigned web interface. The new access points provide faster searches and a number of new browsing and visualization capabilities, facilitating the needs of both experts and less experienced users. eggNOG v4.5 is available at http://eggnog.embl.de.

  • Assessing the barley genome zipper and genomic resources for breeding purposes

    Silvar C, Martis M, Nussbaumer T, Haag N, Rauser R, Keilwagen J, Korzun V, Mayer K, Ordon F, Perovic D
    2015 - The plant genome, in press

    Abstract: 

    The aim of this study was to estimate the accuracy and convergence of newly developed barley genomic resources, primarily GenomeZipper (GZ) and POPulation SEQuencing (POPSEQ), at the genome-wide level and to assess their usefulness in applied barley breeding by analysing seven known loci. Comparison of barley GenomeZipper and POPSEQ maps to a newly developed consensus genetic map constructed with data from thirteen individual linkage maps yielded an accuracy of 97.8% (GenomeZipper) and 99.3% (POPSEQ), respectively, regarding the chromosome assignment. The percentage of agreement in marker position indicates that on average only 3.7% GenomeZipper and 0.7% POPSEQ positions are not in accordance with their cM coordinates in the consensus map. The fine scale comparison involved seven genetic regions on chromosomes 1H, 2H, 4H, 6H and 7H, harboring major genes and quantitative trait loci (QTL) for disease resistance. In total, 179 GZ loci were analyzed and 64 polymorphic markers were developed. Entirely, 89.1% of these were allocated within the targeted intervals and 84.2% followed the predicted order. Forty-four markers showed a match to a POPSEQ-anchored contig, the percentage of collinearity being 93.2% on average. Forty-four markers allowed the identification of twenty-five fingerprinted contigs (FPC) and a more clear delimitation of the physical regions containing the traits of interest. Our results demonstrate that an increase in marker density of barley maps by using new genomic data significantly improves the accuracy of GenomeZipper. In addition, the combination of different barley genomic resources can be considered as a powerful tool to accelerate barley breeding.

  • Examining the transcriptional response in wheat Fhb1 near-isogenic lines to Fusarium graminearum infection and deoxynivalenol treatment

    Hofstad AN, Nussbaumer T, Akhunov E, Shin S, Kugler KG, Kistler HC, Mayer KFX, Muehlbauer GJ
    2015 - The plant genome, in press

    Abstract: 

    Fusarium Head Blight (FHB) is a disease caused predominantly by the fungal pathogen Fusarium graminearum that affects wheat and other small grain cereals and can lead to severe yield loss and reduction in grain quality. Trichothecene mycotoxins, such as deoxynivalenol (DON), accumulate during infection and increase pathogen virulence and decrease grain quality. The Fhb1 locus on wheat chromosome 3BS confers type II resistance to FHB, resistance to the spread of infection on the spike, and has been associated with resistance to DON accumulation. To gain a better genetic understanding of the functional role of Fhb1 and resistance/susceptibility to FHB, we examined DON and ergosterol accumulation, FHB resistance, and the whole genome transcriptomic response using RNA-seq in a near-isogenic line (NIL) pair carrying the resistant and susceptible allele for Fhb1 during F. graminearum infection and DON treatment. Our results provide a gene expression atlas for the resistant and susceptible wheat-F. graminearum interaction. The DON concentration and transcriptomic results show that the rachis is a key location for conferring type II resistance. In addition, the wheat transcriptome analysis revealed a set of Fhb1-responsive genes that may play a role in resistance, and a set of DON-responsive genes that may play a role in trichothecene resistance. Transcriptomic results from the pathogen show that the F. graminearum genome responds differently to the host level of resistance. The results of this study extend our understanding of host and pathogen responses in the wheat-F. graminearum interaction.

  • Biogeographic variation in the microbiome of the ecologically important sponge, Carteriospongia foliascens.

    Luter HM, Widder S, Botté ES, Abdul Wahab M, Whalan S, Moitinho-Silva L, Thomas T, Webster NS
    2015 - PeerJ, e1435

    Abstract: 

    Sponges are well known for hosting dense and diverse microbial communities, but how these associations vary with biogeography and environment is less clear. Here we compared the microbiome of an ecologically important sponge species, Carteriospongia foliascens, over a large geographic area and identified environmental factors likely responsible for driving microbial community differences between inshore and offshore locations using co-occurrence networks (NWs). The microbiome of C. foliascens exhibited exceptionally high microbial richness, with more than 9,000 OTUs identified at 97% sequence similarity. A large biogeographic signal was evident at the OTU level despite similar phyla level diversity being observed across all geographic locations. The C. foliascens bacterial community was primarily comprised of Gammaproteobacteria (34.2% ± 3.4%) and Cyanobacteria (32.2% ± 3.5%), with lower abundances of Alphaproteobacteria, Bacteroidetes, unidentified Proteobacteria, Actinobacteria, Acidobacteria and Deltaproteobacteria. Co-occurrence NWs revealed a consistent increase in the proportion of Cyanobacteria over Bacteroidetes between turbid inshore and oligotrophic offshore locations, suggesting that the specialist microbiome of C. foliascens is driven by environmental factors.

  • A viability-linked metagenomic analysis of cleanroom environments: eukarya, prokaryotes, and viruses.

    Weinmaier T, Probst AJ, La Duc MT, Ciobanu D, Cheng JF, Ivanova N, Rattei T, Vaishampayan P
    2015 - Microbiome, 62

    Abstract: 

    Recent studies posit a reciprocal dependency between the microbiomes associated with humans and indoor environments. However, none of these metagenome surveys has considered the viability of constituent microorganisms when inferring impact on human health.
    Reported here are the results of a viability-linked metagenomics assay, which (1) unveil a remarkably complex community profile for bacteria, fungi, and viruses and (2) bolster the detection of underrepresented taxa by eliminating biases resulting from extraneous DNA. This approach enabled, for the first time ever, the elucidation of viral genomes from a cleanroom environment. Upon comparing the viable biomes and distribution of phylotypes within a cleanroom and adjoining (uncontrolled) gowning enclosure, the rigorous cleaning and stringent control countermeasures of the former were observed to select for a greater presence of anaerobes and spore-forming microflora. Sequence abundance and correlation analyses suggest that the viable indoor microbiome is influenced by both the human microbiome and the surrounding ecosystem(s).
    The findings of this investigation constitute the literature's first ever account of the indoor metagenome derived from DNA originating solely from the potential viable microbial population. Results presented in this study should prove valuable to the conceptualization and experimental design of future studies on indoor microbiomes aimed at inferring impact on human health.

  • Complete nitrification by Nitrospira bacteria.

    Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, von Bergen M, Rattei T, Bendinger B, Nielsen PH, Wagner M
    2015 - Nature, 7583: 504-9

    Abstract: 

    Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered to be a two-step process catalysed by chemolithoautotrophic microorganisms oxidizing either ammonia or nitrite. No known nitrifier carries out both steps, although complete nitrification should be energetically advantageous. This functional separation has puzzled microbiologists for a century. Here we report on the discovery and cultivation of a completely nitrifying bacterium from the genus Nitrospira, a globally distributed group of nitrite oxidizers. The genome of this chemolithoautotrophic organism encodes the pathways both for ammonia and nitrite oxidation, which are concomitantly activated during growth by ammonia oxidation to nitrate. Genes affiliated with the phylogenetically distinct ammonia monooxygenase and hydroxylamine dehydrogenase genes of Nitrospira are present in many environments and were retrieved on Nitrospira-contigs in new metagenomes from engineered systems. These findings fundamentally change our picture of nitrification and point to completely nitrifying Nitrospira as key components of nitrogen-cycling microbial communities.

  • PGSB PlantsDB: updates to the database framework for comparative plant genome research

    Spannagl M, Nussbaumer T, Bader KC, Martis MM, Seidel M, Kugler KG, Gundlach H and Mayer KFX
    2015 - Nucleic acids research, in press

    Abstract: 

    PGSB (Plant Genome and Systems Biology: formerly MIPS) PlantsDB (http://pgsb.helmholtz-muenchen.de/plant/index.jsp) is a database framework for the comparative analysis and visualization of plant genome data. The resource has been updated with new data sets and types as well as specialized tools and interfaces to address user demands for intuitive access to complex plant genome data. In its latest incarnation, we have re-worked both the layout and navigation structure and implemented new keyword search options and a new BLAST sequence search functionality. Actively involved in corresponding sequencing consortia, PlantsDB has dedicated special efforts to the integration and visualization of complex triticeae genome data, especially for barley, wheat and rye. We enhanced CrowsNest, a tool to visualize syntenic relationships between genomes, with data from the wheat sub-genome progenitor Aegilops tauschii and added functionality to the PGSB RNASeqExpressionBrowser. GenomeZipper results were integrated for the genomes of barley, rye, wheat and perennial ryegrass and interactive access is granted through PlantsDB interfaces. Data exchange and cross-linking between PlantsDB and other plant genome databases is stimulated by the transPLANT project (http://transplantdb.eu/).

  • Prediction of microbial phenotypes based on comparative genomics.

    Feldbauer R, Schulz F, Horn M, Rattei T
    2015 - BMC Bioinformatics, 14: S1

    Abstract: 

    The accessibility of almost complete genome sequences of uncultivable microbial species from metagenomes necessitates computational methods predicting microbial phenotypes solely based on genomic data. Here we investigate how comparative genomics can be utilized for the prediction of microbial phenotypes. The PICA framework facilitates application and comparison of different machine learning techniques for phenotypic trait prediction. We have improved and extended PICA's support vector machine plug-in and suggest its applicability to large-scale genome databases and incomplete genome sequences.

  • Joint Transcriptomic and Metabolomic Analyses Reveal Changes in the Primary Metabolism and Imbalances in the Subgenome Orchestration in the Bread Wheat Molecular Response to Fusarium graminearum.

    Nussbaumer T, Warth B, Sharma S, Ametz C, Bueschl C, Parich A, Pfeifer M, Siegwart G, Steiner B, Lemmens M, Schuhmacher R, Buerstmayr H, Mayer KF, Kugler K, Schweiger W
    2015 - G3 (Bethesda), in press

    Abstract: 

    Fusarium head blight is a prevalent disease of bread wheat (Triticum aestivum L. ), which leads to considerable losses in yield and quality. Quantitative resistance to the causative fungus Fusarium graminearum is yet poorly understood. We integrated transcriptomics and metabolomics data to dissect the molecular response to the fungus and its main virulence factor, the toxin deoxynivalenol in near-isogenic lines segregating for two resistance quantitative trait loci, Fhb1 and Qfhs.ifa-5A. The data sets portrait rearrangements in the primary metabolism and the translational machinery to counter the fungus and the effects of the toxin and highlight distinct changes in the metabolism of glutamate in lines carrying Qfhs.ifa-5A. These observations are possibly due to the activity of two amino acid permeases located in the QTL confidence interval, which may contribute to increased pathogen endurance. Mapping to the highly resolved region of Fhb1 reduced the list of candidates to few genes that are specifically expressed in presence of the QTL and in response to the pathogen, which include a receptor-like protein kinase, a protein kinase, and an E3 ubiquitin-protein ligase. On a genome-scale level the individual subgenomes of hexaploid wheat contribute differentially to defense: Especially the D subgenome exhibited a pronounced response to the pathogen and contributed significantly to the overall defense response.

  • Transcriptome Profiling of the Endophyte Burkholderia phytofirmans PsJN Indicates Sensing of the Plant Environment and Drought Stress.

    Sheibani-Tezerji R, Rattei T, Sessitsch A, Trognitz F, Mitter B
    2015 - mBio, 5: e00621-15

    Abstract: 

    It is widely accepted that bacterial endophytes actively colonize plants, interact with their host, and frequently show beneficial effects on plant growth and health. However, the mechanisms of plant-endophyte communication and bacterial adaption to the plant environment are still poorly understood. Here, whole-transcriptome sequencing of B. phytofirmans PsJN colonizing potato (Solanum tuberosum L.) plants was used to analyze in planta gene activity and the response of strain PsJN to plant stress. The transcriptome of PsJN colonizing in vitro potato plants showed a broad array of functionalities encoded in the genome of strain PsJN. Transcripts upregulated in response to plant drought stress were mainly involved in transcriptional regulation, cellular homeostasis, and the detoxification of reactive oxygen species, indicating an oxidative stress response in PsJN. Genes with modulated expression included genes for extracytoplasmatic function (ECF) group IV sigma factors. These cell surface signaling elements allow bacteria to sense changing environmental conditions and to adjust their metabolism accordingly. TaqMan quantitative PCR (TaqMan-qPCR) was performed to identify ECF sigma factors in PsJN that were activated in response to plant stress. Six ECF sigma factor genes were expressed in PsJN colonizing potato plants. The expression of one ECF sigma factor was upregulated whereas that of another one was downregulated in a plant genotype-specific manner when the plants were stressed. Collectively, our study results indicate that endophytic B. phytofirmans PsJN cells are active inside plants. Moreover, the activity of strain PsJN is affected by plant drought stress; it senses plant stress signals and adjusts its gene expression accordingly.
    In recent years, plant growth-promoting endophytes have received steadily growing interest as an inexpensive alternative to resource-consuming agrochemicals in sustainable agriculture. Even though promising effects are recurrently observed under controlled conditions, these are rarely reproducible in the field or show undesirably strong variations. Obviously, a better understanding of endophyte activities in plants and the influence of plant physiology on these activities is needed to develop more-successful application strategies. So far, research has focused mainly on analyzing the plant response to bacterial inoculants. This prompted us to study the gene expression of the endophyte Burkholderia phytofirmans PsJN in potato plants. We found that endophytic PsJN cells express a wide array of genes and pathways, pointing to high metabolic activity inside plants. Moreover, the strain senses changes in the plant physiology due to plant stress and adjusts its gene expression pattern to cope with and adapt to the altered conditions.

  • Internalization of Pseudomonas aeruginosa Strain PAO1 into Epithelial Cells Is Promoted by Interaction of a T6SS Effector with the Microtubule Network.

    Sana TG, Baumann C, Merdes A, Soscia C, Rattei T, Hachani A, Jones C, Bennett KL, Filloux A, Superti-Furga G, Voulhoux R, Bleves S
    2015 - mBio, 3: e00712

    Abstract: 

    Invasion of nonphagocytic cells through rearrangement of the actin cytoskeleton is a common immune evasion mechanism used by most intracellular bacteria. However, some pathogens modulate host microtubules as well by a still poorly understood mechanism. In this study, we aim at deciphering the mechanisms by which the opportunistic bacterial pathogen Pseudomonas aeruginosa invades nonphagocytic cells, although it is considered mainly an extracellular bacterium. Using confocal microscopy and immunofluorescence, we show that the evolved VgrG2b effector of P. aeruginosa strain PAO1 is delivered into epithelial cells by a type VI secretion system, called H2-T6SS, involving the VgrG2a component. An in vivo interactome of VgrG2b in host cells allows the identification of microtubule components, including the γ-tubulin ring complex (γTuRC), a multiprotein complex catalyzing microtubule nucleation, as the major host target of VgrG2b. This interaction promotes a microtubule-dependent internalization of the bacterium since colchicine and nocodazole, two microtubule-destabilizing drugs, prevent VgrG2b-mediated P. aeruginosa entry even if the invasion still requires actin. We further validate our findings by demonstrating that the type VI injection step can be bypassed by ectopic production of VgrG2b inside target cells prior to infection. Moreover, such uncoupling between VgrG2b injection and bacterial internalization also reveals that they constitute two independent steps. With VgrG2b, we provide the first example of a bacterial protein interacting with the γTuRC. Our study offers key insight into the mechanism of self-promoting invasion of P. aeruginosa into human cells via a directed and specific effector-host protein interaction.
    Innate immunity and specifically professional phagocytic cells are key determinants in the ability of the host to control P. aeruginosa infection. However, among various virulence strategies, including attack, this opportunistic bacterial pathogen is able to avoid host clearance by triggering its own internalization in nonphagocytic cells. We previously showed that a protein secretion/injection machinery, called the H2 type VI secretion system (H2-T6SS), promotes P. aeruginosa uptake by epithelial cells. Here we investigate which H2-T6SS effector enables P. aeruginosa to enter nonphagocytic cells. We show that VgrG2b is delivered by the H2-T6SS machinery into epithelial cells, where it interacts with microtubules and, more particularly, with the γ-tubulin ring complex (γTuRC) known as the microtubule-nucleating center. This interaction precedes a microtubule- and actin-dependent internalization of P. aeruginosa. We thus discovered an unprecedented target for a bacterial virulence factor since VgrG2b constitutes, to our knowledge, the first example of a bacterial protein interacting with the γTuRC.

  • The genomes of closely related Pantoea ananatis maize seed endophytes having different effects on the host plant differ in secretion system genes and mobile genetic elements.

    Sheibani-Tezerji R, Naveed M, Jehl MA, Sessitsch A, Rattei T, Mitter B
    2015 - Front Microbiol, 440

    Abstract: 

    The seed as a habitat for microorganisms is as yet under-explored and has quite distinct characteristics as compared to other vegetative plant tissues. In this study, we investigated three closely related P. ananatis strains (named S6, S7, and S8), which were isolated from maize seeds of healthy plants. Plant inoculation experiments revealed that each of these strains exhibited a different phenotype ranging from weak pathogenic (S7), commensal (S8), to a beneficial, growth-promoting effect (S6) in maize. We performed a comparative genomics analysis in order to find genetic determinants responsible for the differences observed. Recent studies provided exciting insight into the genetic drivers of niche adaption and functional diversification of the genus Pantoea. However, we report here for the first time on the analysis of P. ananatis strains colonizing the same ecological niche but showing distinct interaction strategies with the host plant. Our comparative analysis revealed that genomes of these three strains are highly similar. However, genomic differences in genes encoding protein secretion systems and putative effectors, and transposase/integrases/phage related genes could be observed.

  • The Intraperitoneal Transcriptome of the Opportunistic Pathogen Enterococcus faecalis in Mice.

    Muller C, Cacaci M, Sauvageot N, Sanguinetti M, Rattei T, Eder T, Giard JC, Kalinowski J, Hain T, Hartke A
    2015 - PloS one, 5: e0126143

    Abstract: 

    Enterococcus faecalis is a Gram-positive lactic acid intestinal opportunistic bacterium with virulence potential. For a better understanding of the adapation of this bacterium to the host conditions, we performed a transcriptome analysis of bacteria isolated from an infection site (mouse peritonitis) by RNA-sequencing. We identified a total of 211 genes with significantly higher transcript levels and 157 repressed genes. Our in vivo gene expression database reflects well the infection process since genes encoding important virulence factors like cytolysin, gelatinase or aggregation substance as well as stress response proteins, are significantly induced. Genes encoding metabolic activities are the second most abundant in vivo induced genes demonstrating that the bacteria are metabolically active and adapt to the special nutrient conditions of the host. α- and β- glucosides seem to be important substrates for E. faecalis inside the host. Compared to laboratory conditions, the flux through the upper part of glycolysis seems to be reduced and more carbon may enter the pentose phosphate pathway. This may reflect the need of the bacteria under infection conditions to produce more reducing power for biosynthesis. Another important substrate is certainly glycerol since both pathways of glycerol catabolism are strongly induced. Strongly in vivo induced genes should be important for the infection process. This assumption has been verified in a virulence test using well characterized mutants affected in glycerol metabolism. This showed indeed that mutants unable to metabolize this sugar alcohol are affected in organ colonisation in a mouse model.

  • Genomic factors related to tissue tropism in Chlamydia pneumoniae infection.

    Weinmaier T, Hoser J, Eck S, Kaufhold I, Shima K, Strom TM, Rattei T, Rupp J
    2015 - BMC genomics, 268

    Abstract: 

    Chlamydia pneumoniae (Cpn) are obligate intracellular bacteria that cause acute infections of the upper and lower respiratory tract and have been implicated in chronic inflammatory diseases. Although of significant clinical relevance, complete genome sequences of only four clinical Cpn strains have been obtained. All of them were isolated from the respiratory tract and shared more than 99% sequence identity. Here we investigate genetic differences on the whole-genome level that are related to Cpn tissue tropism and pathogenicity.
    We have sequenced the genomes of 18 clinical isolates from different anatomical sites (e.g. lung, blood, coronary arteries) of diseased patients, and one animal isolate. In total 1,363 SNP loci and 184 InDels have been identified in the genomes of all clinical Cpn isolates. These are distributed throughout the whole chlamydial genome and enriched in highly variable regions. The genomes show clear evidence of recombination in at least one potential region but no phage insertions. The tyrP gene was always encoded as single copy in all vascular isolates. Phylogenetic reconstruction revealed distinct evolutionary lineages containing primarily non-respiratory Cpn isolates. In one of these, clinical isolates from coronary arteries and blood monocytes were closely grouped together. They could be distinguished from all other isolates by characteristic nsSNPs in genes involved in RB to EB transition, inclusion membrane formation, bacterial stress response and metabolism.
    This study substantially expands the genomic data of Cpn and elucidates its evolutionary history. The translation of the observed Cpn genetic differences into biological functions and the prediction of novel pathogen-oriented diagnostic strategies have to be further explored.

  • Wiring for independence: positive feedback motifs facilitate individuation of traits in development and evolution.

    Pavličev M, Widder S
    2015 - J. Exp. Zool. B Mol. Dev. Evol., 2: 104-13

    Abstract: 

    Independent selection response of a trait is contingent on the availability of genetic variation that is not entangled with other traits. Mechanistically, such variational individuation in spite of shared genome results from gene regulation. Changes that increase individuation of traits are likely caused by gene regulatory changes. Yet the effect of regulatory evolution on population variation is understudied. Trait individuation also occurs during development. Developmental differentiation involves two stages-induction of differentiation and the maintenance of differentiated fate. The corresponding gene regulatory transition involves the feed-forward and the regulated feedback motifs. Here we consider analogous transition pattern at the evolutionary scale, establishing an autonomous regulatory sub-network involved in the independent trait variation. A population genetic simulation of regulated feedback loop dynamics under small perturbations shows a decoupling of variation in gene expression between the upstream gene and the responding downstream gene. We furthermore observe that the ranges of dynamics that can be generated by feedback and feed-forward networks overlap. Such phenotypic overlap enables genetic accessibility of network-specific expression dynamics. We suggest that feedback topology may eventually confer selective advantage leading from a gradual process to threshold individuation, i.e., the emergence of a novel trait.

  • pH as a Driver for Ammonia-Oxidizing Archaea in Forest Soils.

    Stempfhuber B, Engel M, Fischer D, Neskovic-Prit G, Wubet T, Schöning I, Gubry-Rangin C, Kublik S, Schloter-Hai B, Rattei T, Welzl G, Nicol GW, Schrumpf M, Buscot F, Prosser JI, Schloter M
    2015 - Microb. Ecol., 4: 879-83

    Abstract: 

    In this study, we investigated the impact of soil pH on the diversity and abundance of archaeal ammonia oxidizers in 27 different forest soils across Germany. DNA was extracted from topsoil samples, the amoA gene, encoding ammonia monooxygenase, was amplified; and the amplicons were sequenced using a 454-based pyrosequencing approach. As expected, the ratio of archaeal (AOA) to bacterial (AOB) ammonia oxidizers' amoA genes increased sharply with decreasing soil pH. The diversity of AOA differed significantly between sites with ultra-acidic soil pH (<3.5) and sites with higher pH values. The major OTUs from soil samples with low pH could be detected at each site with a soil pH <3.5 but not at sites with pH >4.5, regardless of geographic position and vegetation. These OTUs could be related to the Nitrosotalea group 1.1 and the Nitrososphaera subcluster 7.2, respectively, and showed significant similarities to OTUs described from other acidic environments. Conversely, none of the major OTUs typical of sites with a soil pH >4.6 could be found in the ultra- and extreme acidic soils. Based on a comparison with the amoA gene sequence data from a previous study performed on agricultural soils, we could clearly show that the development of AOA communities in soils with ultra-acidic pH (<3.5) is mainly triggered by soil pH and is not influenced significantly by the type of land use, the soil type, or the geographic position of the site, which was observed for sites with acido-neutral soil pH.

  • Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases.

    Müller AL, Kjeldsen KU, Rattei T, Pester M, Loy A
    2015 - ISME J, 5: 1152-65

    Abstract: 

    The energy metabolism of essential microbial guilds in the biogeochemical sulfur cycle is based on a DsrAB-type dissimilatory (bi)sulfite reductase that either catalyzes the reduction of sulfite to sulfide during anaerobic respiration of sulfate, sulfite and organosulfonates, or acts in reverse during sulfur oxidation. Common use of dsrAB as a functional marker showed that dsrAB richness in many environments is dominated by novel sequence variants and collectively represents an extensive, largely uncharted sequence assemblage. Here, we established a comprehensive, manually curated dsrAB/DsrAB database and used it to categorize the known dsrAB diversity, reanalyze the evolutionary history of dsrAB and evaluate the coverage of published dsrAB-targeted primers. Based on a DsrAB consensus phylogeny, we introduce an operational classification system for environmental dsrAB sequences that integrates established taxonomic groups with operational taxonomic units (OTUs) at multiple phylogenetic levels, ranging from DsrAB enzyme families that reflect reductive or oxidative DsrAB types of bacterial or archaeal origin, superclusters, uncultured family-level lineages to species-level OTUs. Environmental dsrAB sequences constituted at least 13 stable family-level lineages without any cultivated representatives, suggesting that major taxa of sulfite/sulfate-reducing microorganisms have not yet been identified. Three of these uncultured lineages occur mainly in marine environments, while specific habitat preferences are not evident for members of the other 10 uncultured lineages. In summary, our publically available dsrAB/DsrAB database, the phylogenetic framework, the multilevel classification system and a set of recommended primers provide a necessary foundation for large-scale dsrAB ecology studies with next-generation sequencing methods.

  • Functionally relevant diversity of closely related Nitrospira in activated sludge.

    Gruber-Dorninger C, Pester M, Kitzinger K, Savio DF, Loy A, Rattei T, Wagner M, Daims H
    2015 - ISME J, 3: 643-55

    Abstract: 

    Nitrospira are chemolithoautotrophic nitrite-oxidizing bacteria that catalyze the second step of nitrification in most oxic habitats and are important for excess nitrogen removal from sewage in wastewater treatment plants (WWTPs). To date, little is known about their diversity and ecological niche partitioning within complex communities. In this study, the fine-scale community structure and function of Nitrospira was analyzed in two full-scale WWTPs as model ecosystems. In Nitrospira-specific 16S rRNA clone libraries retrieved from each plant, closely related phylogenetic clusters (16S rRNA identities between clusters ranged from 95.8% to 99.6%) within Nitrospira lineages I and II were found. Newly designed probes for fluorescence in situ hybridization (FISH) allowed the specific detection of several of these clusters, whose coexistence in the WWTPs was shown for prolonged periods of several years. In situ ecophysiological analyses based on FISH, relative abundance and spatial arrangement quantification, as well as microautoradiography revealed functional differences of these Nitrospira clusters regarding the preferred nitrite concentration, the utilization of formate as substrate and the spatial coaggregation with ammonia-oxidizing bacteria as symbiotic partners. Amplicon pyrosequencing of the nxrB gene, which encodes subunit beta of nitrite oxidoreductase of Nitrospira, revealed in one of the WWTPs as many as 121 species-level nxrB operational taxonomic units with highly uneven relative abundances in the amplicon library. These results show a previously unrecognized high diversity of Nitrospira in engineered systems, which is at least partially linked to niche differentiation and may have important implications for process stability.

  • Complete Genome Sequence of Listeria monocytogenes Lm60, a Strain with an Enhanced Cold Adaptation Capacity.

    Tasara T, Weinmaier T, Klumpp J, Rattei T, Stephan R
    2014 - Genome Announc, 6: epub

    Abstract: 

    The complete genome sequence of Listeria monocytogenes Lm60, a fast cold-adapting serotype 1/2a human isolate, is presented.

  • Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface.

    Probst AJ, Weinmaier T, Raymann K, Perras A, Emerson JB, Rattei T, Wanner G, Klingl A, Berg IA, Yoshinaga M, Viehweger B, Hinrichs KU, Thomas BC, Meck S, Auerbach AK, Heise M, Schintlmeister A, Schmid M, Wagner M, Gribaldo S, Banfield JF, Moissl-Eichinger C
    2014 - Nat Commun, 5497

    Abstract: 

    Subsurface microbial life contributes significantly to biogeochemical cycling, yet it remains largely uncharacterized, especially its archaeal members. This 'microbial dark matter' has been explored by recent studies that were, however, mostly based on DNA sequence information only. Here, we use diverse techniques including ultrastuctural analyses to link genomics to biology for the SM1 Euryarchaeon lineage, an uncultivated group of subsurface archaea. Phylogenomic analyses reveal this lineage to belong to a widespread group of archaea that we propose to classify as a new euryarchaeal order ('Candidatus Altiarchaeales'). The representative, double-membraned species 'Candidatus Altiarchaeum hamiconexum' has an autotrophic metabolism that uses a not-yet-reported Factor420-free reductive acetyl-CoA pathway, confirmed by stable carbon isotopic measurements of archaeal lipids. Our results indicate that this lineage has evolved specific metabolic and structural features like nano-grappling hooks empowering this widely distributed archaeon to predominate anaerobic groundwater, where it may represent an important carbon dioxide sink.

  • Recombination drives evolution of the Clostridium difficile 16S-23S rRNA intergenic spacer region.

    Janezic S, Indra A, Rattei T, Weinmaier T, Rupnik M
    2014 - PloS one, 9: e106545

    Abstract: 

    PCR-ribotyping, a typing method based on size variation in 16S-23S rRNA intergenic spacer region (ISR), has been used widely for molecular epidemiological investigations of C. difficile infections. In the present study, we describe the sequence diversity of ISRs from 43 C. difficile strains, representing different PCR-ribotypes and suggest homologous recombination as a possible mechanism driving the evolution of 16S-23S rRNA ISRs. ISRs of 45 different lengths (ranging from 185 bp to 564 bp) were found among 458 ISRs. All ISRs could be described with one of the 22 different structural groups defined by the presence or absence of different sequence modules; tRNAAla genes and different combinations of spacers of different lengths (33 bp, 53 bp or 20 bp) and 9 bp direct repeats separating the spacers. The ISR structural group, in most cases, coincided with the sequence length. ISRs that were of the same lengths had also very similar nucleotide sequence, suggesting that ISRs were not suitable for discriminating between different strains based only on the ISR sequence. Despite large variations in the length, the alignment of ISR sequences, based on the primary sequence and secondary structure information, revealed many conserved regions which were mainly involved in maturation of pre-rRNA. Phylogenetic analysis of the ISR alignment yielded strong evidence for intra- and inter-homologous recombination which could be one of the mechanisms driving the evolution of C. difficile 16S-23S ISRs. The modular structure of the ISR, the high sequence similarities of ISRs of the same sizes and the presence of homologous recombination also suggest that different copies of C. difficile 16S-23S rRNA ISR are evolving in concert.

  • A comparative metagenome survey of the fecal microbiota of a breast- and a plant-fed Asian elephant reveals an unexpectedly high diversity of glycoside hydrolase family enzymes.

    Ilmberger N, Güllert S, Dannenberg J, Rabausch U, Torres J, Wemheuer B, Alawi M, Poehlein A, Chow J, Turaev D, Rattei T, Schmeisser C, Salomon J, Olsen PB, Daniel R, Grundhoff A, Borchert MS, Streit WR
    2014 - PloS one, 9: e106707

    Abstract: 

    A phylogenetic and metagenomic study of elephant feces samples (derived from a three-weeks-old and a six-years-old Asian elephant) was conducted in order to describe the microbiota inhabiting this large land-living animal. The microbial diversity was examined via 16S rRNA gene analysis. We generated more than 44,000 GS-FLX+454 reads for each animal. For the baby elephant, 380 operational taxonomic units (OTUs) were identified at 97% sequence identity level; in the six-years-old animal, close to 3,000 OTUs were identified, suggesting high microbial diversity in the older animal. In both animals most OTUs belonged to Bacteroidetes and Firmicutes. Additionally, for the baby elephant a high number of Proteobacteria was detected. A metagenomic sequencing approach using Illumina technology resulted in the generation of 1.1 Gbp assembled DNA in contigs with a maximum size of 0.6 Mbp. A KEGG pathway analysis suggested high metabolic diversity regarding the use of polymers and aromatic and non-aromatic compounds. In line with the high phylogenetic diversity, a surprising and not previously described biodiversity of glycoside hydrolase (GH) genes was found. Enzymes of 84 GH families were detected. Polysaccharide utilization loci (PULs), which are found in Bacteroidetes, were highly abundant in the dataset; some of these comprised cellulase genes. Furthermore the highest coverage for GH5 and GH9 family enzymes was detected for Bacteroidetes, suggesting that bacteria of this phylum are mainly responsible for the degradation of cellulose in the Asian elephant. Altogether, this study delivers insight into the biomass conversion by one of the largest plant-fed and land-living animals.

  • Fluvial network organization imprints on microbial co-occurrence networks.

    Widder S, Besemer K, Singer GA, Ceola S, Bertuzzo E, Quince C, Sloan WT, Rinaldo A, Battin TJ
    2014 - Proc. Natl. Acad. Sci. U.S.A., 35: 12799-804

    Abstract: 

    Recent studies highlight linkages among the architecture of ecological networks, their persistence facing environmental disturbance, and the related patterns of biodiversity. A hitherto unresolved question is whether the structure of the landscape inhabited by organisms leaves an imprint on their ecological networks. We analyzed, based on pyrosequencing profiling of the biofilm communities in 114 streams, how features inherent to fluvial networks affect the co-occurrence networks that the microorganisms form in these biofilms. Our findings suggest that hydrology and metacommunity dynamics, both changing predictably across fluvial networks, affect the fragmentation of the microbial co-occurrence networks throughout the fluvial network. The loss of taxa from co-occurrence networks demonstrates that the removal of gatekeepers disproportionately contributed to network fragmentation, which has potential implications for the functions biofilms fulfill in stream ecosystems. Our findings are critical because of increased anthropogenic pressures deteriorating stream ecosystem integrity and biodiversity.

  • Characterization of 19 new microsatellite loci for the Omani barb Garra barreimiae from 454 sequences.

    Kirchner S, Weinmaier T, Rattei T, Sattmann H, Kruckenhauser L
    2014 - BMC Res Notes, 522

    Abstract: 

    Garra barreimiae is a cyprinid fish from the southeastern Arabian Peninsula, which inhabits regularly desiccating wadis and survives in isolated ponds or underground. In 1984 a cave-dwelling population was found in the Al Hoota cave system and previous genetic analyses revealed some differentiation with limited gene flow between the surface populations and the cave population. Since no suitable markers are available for evaluation of gene flow between the cave population and the adjacent surface populations, we focused on designing and establishing novel microsatellite markers from next generation sequencing data.
    19 microsatellite markers containing di- and tetranucleotide simple sequence repeats were developed from 454 sequences. Forty-four individuals from two surface populations (Wadi Al Falahi and Misfat Al Abriyeen) of G. barreimiae (sampling permission number 13/2012, export permission number 29/2012) were used for analyses and characterization of the loci. On average, the number of alleles per locus is 7.6 (range: 2-20). Two markers displayed indication of linkage disequilibrium in both populations (DL6X, 9XNC). Significant deviation from Hardy-Weinberg equilibrium was observed at four loci in the Misfat Al Abriyeen population (2PUM, 88CM, 1EHE, 3Z7M) and at two loci in the Wadi Al Falahi population (QLIM, 3 N43). Three of the microsatellite loci were significant for null alleles in one of the two populations (Misfat Al Abriyeen: CJHG; Wadi Al Falahi: PH8A, 3ROZ). Expected and observed heterozygosities ranged from 0 to 95.0% respectively from 0 to 95.8% (Wadi Al Falahi) and from 0 to 89.1% respectively from 0 to 95.0% (Misfat Al Abriyeen). Fourteen of these markers were successfully cross-amplified in G. rufa.
    This 19 microsatellite loci provide a useful tool to understand the structure and genetic differences of populations. Moreover, these markers will help to evaluate species delimitation in G. barreimiae and potentially even in related species.

  • Massive expansion of Ubiquitination-related gene families within the Chlamydiae.

    Domman D, Collingro A, Lagkouvardos I, Gehre L, Weinmaier T, Rattei T, Subtil A, Horn M
    2014 - Mol. Biol. Evol., 11: 2890-904

    Abstract: 

    Gene loss, gain, and transfer play an important role in shaping the genomes of all organisms; however, the interplay of these processes in isolated populations, such as in obligate intracellular bacteria, is less understood. Despite a general trend towards genome reduction in these microbes, our phylogenomic analysis of the phylum Chlamydiae revealed that within the family Parachlamydiaceae, gene family expansions have had pronounced effects on gene content. We discovered that the largest gene families within the phylum are the result of rapid gene birth-and-death evolution. These large gene families are comprised of members harboring eukaryotic-like ubiquitination-related domains, such as F-box and BTB-box domains, marking the largest reservoir of these proteins found among bacteria. A heterologous type III secretion system assay suggests that these proteins function as effectors manipulating the host cell. The large disparity in copy number of members in these families between closely related organisms suggests that nonadaptive processes might contribute to the evolution of these gene families. Gene birth-and-death evolution in concert with genomic drift might represent a previously undescribed mechanism by which isolated bacterial populations diversify.

  • Metagenomic analysis reveals presence of Treponema denticola in a tissue biopsy of the Iceman.

    Maixner F, Thomma A, Cipollini G, Widder S, Rattei T, Zink A
    2014 - PloS one, 6: e99994

    Abstract: 

    Ancient hominoid genome studies can be regarded by definition as metagenomic analyses since they represent a mixture of both hominoid and microbial sequences in an environment. Here, we report the molecular detection of the oral spirochete Treponema denticola in ancient human tissue biopsies of the Iceman, a 5,300-year-old Copper Age natural ice mummy. Initially, the metagenomic data of the Iceman's genomic survey was screened for bacterial ribosomal RNA (rRNA) specific reads. Through ranking the reads by abundance a relatively high number of rRNA reads most similar to T. denticola was detected. Mapping of the metagenome sequences against the T. denticola genome revealed additional reads most similar to this opportunistic pathogen. The DNA damage pattern of specifically mapped reads suggests an ancient origin of these sequences. The haematogenous spread of bacteria of the oral microbiome often reported in the recent literature could already explain the presence of metagenomic reads specific for T. denticola in the Iceman's bone biopsy. We extended, however, our survey to an Iceman gingival tissue sample and a mouth swab sample and could thereby detect T. denticola and Porphyrimonas gingivalis, another important member of the human commensal oral microflora. Taken together, this study clearly underlines the opportunity to detect disease-associated microorganisms when applying metagenomics-enabled approaches on datasets of ancient human remains.

  • Distinct signatures of host-microbial meta-metabolome and gut microbiome in two C57BL/6 strains under high-fat diet.

    Walker A, Pfitzner B, Neschen S, Kahle M, Harir M, Lucio M, Moritz F, Tziotis D, Witting M, Rothballer M, Engel M, Schmid M, Endesfelder D, Klingenspor M, Rattei T, Castell WZ, de Angelis MH, Hartmann A, Schmitt-Kopplin P
    2014 - ISME J, 12: 2380-96

    Abstract: 

    A combinatory approach using metabolomics and gut microbiome analysis techniques was performed to unravel the nature and specificity of metabolic profiles related to gut ecology in obesity. This study focused on gut and liver metabolomics of two different mouse strains, the C57BL/6J (C57J) and the C57BL/6N (C57N) fed with high-fat diet (HFD) for 3 weeks, causing diet-induced obesity in C57N, but not in C57J mice. Furthermore, a 16S-ribosomal RNA comparative sequence analysis using 454 pyrosequencing detected significant differences between the microbiome of the two strains on phylum level for Firmicutes, Deferribacteres and Proteobacteria that propose an essential role of the microbiome in obesity susceptibility. Gut microbial and liver metabolomics were followed by a combinatory approach using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and ultra performance liquid chromatography time of tlight MS/MS with subsequent multivariate statistical analysis, revealing distinctive host and microbial metabolome patterns between the C57J and the C57N strain. Many taurine-conjugated bile acids (TBAs) were significantly elevated in the cecum and decreased in liver samples from the C57J phenotype likely displaying different energy utilization behavior by the bacterial community and the host. Furthermore, several metabolite groups could specifically be associated with the C57N phenotype involving fatty acids, eicosanoids and urobilinoids. The mass differences based metabolite network approach enabled to extend the range of known metabolites to important bile acids (BAs) and novel taurine conjugates specific for both strains. In summary, our study showed clear alterations of the metabolome in the gastrointestinal tract and liver within a HFD-induced obesity mouse model in relation to the host-microbial nutritional adaptation.

  • Deciphering microbial interactions and detecting keystone species with co-occurrence networks.

    Berry D, Widder S
    2014 - Front Microbiol, 219

    Abstract: 

    Co-occurrence networks produced from microbial survey sequencing data are frequently used to identify interactions between community members. While this approach has potential to reveal ecological processes, it has been insufficiently validated due to the technical limitations inherent in studying complex microbial ecosystems. Here, we simulate multi-species microbial communities with known interaction patterns using generalized Lotka-Volterra dynamics. We then construct co-occurrence networks and evaluate how well networks reveal the underlying interactions and how experimental and ecological parameters can affect network inference and interpretation. We find that co-occurrence networks can recapitulate interaction networks under certain conditions, but that they lose interpretability when the effects of habitat filtering become significant. We demonstrate that networks suffer from local hot spots of spurious correlation in the neighborhood of hub species that engage in many interactions. We also identify topological features associated with keystone species in co-occurrence networks. This study provides a substantiated framework to guide environmental microbiologists in the construction and interpretation of co-occurrence networks from microbial survey datasets.

  • Draft Genome Sequence of the Growth-Promoting Endophyte Paenibacillus sp. P22, Isolated from Populus.

    Hanak AM, Nagler M, Weinmaier T, Sun X, Fragner L, Schwab C, Rattei T, Ulrich K, Ewald D, Engel M, Schloter M, Bittner R, Schleper C, Weckwerth W
    2014 - Genome Announc, 2: epub

    Abstract: 

    Paenibacillus sp. P22 is a Gram-negative facultative anaerobic endospore-forming bacterium isolated from poplar hybrid 741 (♀[Populus alba × (P. davidiana + P. simonii) × P. tomentosa]). This bacterium shows strong similarities to Paenibacillus humicus, and important growth-promoting effects on in vitro grown explants of poplar hybrid 741 have been described.

  • Challenges in RNA virus bioinformatics.

    Marz M, Beerenwinkel N, Drosten C, Fricke M, Frishman D, Hofacker IL, Hoffmann D, Middendorf M, Rattei T, Stadler PF, Töpfer A
    2014 - Bioinformatics, 13: 1793-9

    Abstract: 

    Computer-assisted studies of structure, function and evolution of viruses remains a neglected area of research. The attention of bioinformaticians to this interesting and challenging field is far from commensurate with its medical and biotechnological importance. It is telling that out of >200 talks held at ISMB 2013, the largest international bioinformatics conference, only one presentation explicitly dealt with viruses. In contrast to many broad, established and well-organized bioinformatics communities (e.g. structural genomics, ontologies, next-generation sequencing, expression analysis), research groups focusing on viruses can probably be counted on the fingers of two hands.
    The purpose of this review is to increase awareness among bioinformatics researchers about the pressing needs and unsolved problems of computational virology. We focus primarily on RNA viruses that pose problems to many standard bioinformatics analyses owing to their compact genome organization, fast mutation rate and low evolutionary conservation. We provide an overview of tools and algorithms for handling viral sequencing data, detecting functionally important RNA structures, classifying viral proteins into families and investigating the origin and evolution of viruses.

  • Ultra deep sequencing of Listeria monocytogenes sRNA transcriptome revealed new antisense RNAs.

    Behrens S, Widder S, Mannala GK, Qing X, Madhugiri R, Kefer N, Abu Mraheil M, Rattei T, Hain T
    2014 - PloS one, 2: e83979

    Abstract: 

    Listeria monocytogenes, a gram-positive pathogen, and causative agent of listeriosis, has become a widely used model organism for intracellular infections. Recent studies have identified small non-coding RNAs (sRNAs) as important factors for regulating gene expression and pathogenicity of L. monocytogenes. Increased speed and reduced costs of high throughput sequencing (HTS) techniques have made RNA sequencing (RNA-Seq) the state-of-the-art method to study bacterial transcriptomes. We created a large transcriptome dataset of L. monocytogenes containing a total of 21 million reads, using the SOLiD sequencing technology. The dataset contained cDNA sequences generated from L. monocytogenes RNA collected under intracellular and extracellular condition and additionally was size fractioned into three different size ranges from <40 nt, 40-150 nt and >150 nt. We report here, the identification of nine new sRNAs candidates of L. monocytogenes and a reevaluation of known sRNAs of L. monocytogenes EGD-e. Automatic comparison to known sRNAs revealed a high recovery rate of 55%, which was increased to 90% by manual revision of the data. Moreover, thorough classification of known sRNAs shed further light on their possible biological functions. Interestingly among the newly identified sRNA candidates are antisense RNAs (asRNAs) associated to the housekeeping genes purA, fumC and pgi and potentially their regulation, emphasizing the significance of sRNAs for metabolic adaptation in L. monocytogenes.

  • eggNOG v4.0: nested orthology inference across 3686 organisms.

    Powell S, Forslund K, Szklarczyk D, Trachana K, Roth A, Huerta-Cepas J, Gabaldón T, Rattei T, Creevey C, Kuhn M, Jensen LJ, von Mering C, Bork P
    2014 - Nucleic Acids Res., D231-9

    Abstract: 

    With the increasing availability of various 'omics data, high-quality orthology assignment is crucial for evolutionary and functional genomics studies. We here present the fourth version of the eggNOG database (available at http://eggnog.embl.de) that derives nonsupervised orthologous groups (NOGs) from complete genomes, and then applies a comprehensive characterization and analysis pipeline to the resulting gene families. Compared with the previous version, we have more than tripled the underlying species set to cover 3686 organisms, keeping track with genome project completions while prioritizing the inclusion of high-quality genomes to minimize error propagation from incomplete proteome sets. Major technological advances include (i) a robust and scalable procedure for the identification and inclusion of high-quality genomes, (ii) provision of orthologous groups for 107 different taxonomic levels compared with 41 in eggNOGv3, (iii) identification and annotation of particularly closely related orthologous groups, facilitating analysis of related gene families, (iv) improvements of the clustering and functional annotation approach, (v) adoption of a revised tree building procedure based on the multiple alignments generated during the process and (vi) implementation of quality control procedures throughout the entire pipeline. As in previous versions, eggNOGv4 provides multiple sequence alignments and maximum-likelihood trees, as well as broad functional annotation. Users can access the complete database of orthologous groups via a web interface, as well as through bulk download.

  • Signature protein of the PVC superphylum.

    Lagkouvardos I, Jehl MA, Rattei T, Horn M
    2014 - Appl. Environ. Microbiol., 2: 440-5

    Abstract: 

    The phyla Planctomycetes, Verrucomicrobia, Chlamydiae, Lentisphaerae, and "Candidatus Omnitrophica (OP3)" comprise bacteria that share an ancestor but show highly diverse biological and ecological features. Together, they constitute the PVC superphylum. Using large-scale comparative genome sequence analysis, we identified a protein uniquely shared among all of the known members of the PVC superphylum. We provide evidence that this signature protein is expressed by representative members of the PVC superphylum. Its predicted structure, physicochemical characteristics, and overexpression in Escherichia coli and gel retardation assays with purified signature protein suggest a housekeeping function with unspecific DNA/RNA binding activity. Phylogenetic analysis demonstrated that the signature protein is a suitable phylogenetic marker for members of the PVC superphylum, and the screening of published metagenome data indicated the existence of additional PVC members. This study provides further evidence of a common evolutionary history of the PVC superphylum and presents a unique case in which a single protein serves as an evolutionary link among otherwise highly diverse members of major bacterial groups.

  • SIMAP--the database of all-against-all protein sequence similarities and annotations with new interfaces and increased coverage.

    Arnold R, Goldenberg F, Mewes HW, Rattei T
    2014 - Nucleic Acids Res., D279-84

    Abstract: 

    The Similarity Matrix of Proteins (SIMAP, http://mips.gsf.de/simap/) database has been designed to massively accelerate computationally expensive protein sequence analysis tasks in bioinformatics. It provides pre-calculated sequence similarities interconnecting the entire known protein sequence universe, complemented by pre-calculated protein features and domains, similarity clusters and functional annotations. SIMAP covers all major public protein databases as well as many consistently re-annotated metagenomes from different repositories. As of September 2013, SIMAP contains >163 million proteins corresponding to ∼70 million non-redundant sequences. SIMAP uses the sensitive FASTA search heuristics, the Smith-Waterman alignment algorithm, the InterPro database of protein domain models and the BLAST2GO functional annotation algorithm. SIMAP assists biologists by facilitating the interactive exploration of the protein sequence universe. Web-Service and DAS interfaces allow connecting SIMAP with any other bioinformatic tool and resource. All-against-all protein sequence similarity matrices of project-specific protein collections are generated on request. Recent improvements allow SIMAP to cover the rapidly growing sequenced protein sequence universe. New Web-Service interfaces enhance the connectivity of SIMAP. Novel tools for interactive extraction of protein similarity networks have been added. Open access to SIMAP is provided through the web portal; the portal also contains instructions and links for software access and flat file downloads.

  • NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira.

    Pester M, Maixner F, Berry D, Rattei T, Koch H, Lücker S, Nowka B, Richter A, Spieck E, Lebedeva E, Loy A, Wagner M, Daims H
    2014 - Environ. Microbiol., 10: 3055-71

    Abstract: 

    Nitrospira are the most widespread and diverse known nitrite-oxidizing bacteria and key nitrifiers in natural and engineered ecosystems. Nevertheless, their ecophysiology and environmental distribution are understudied because of the recalcitrance of Nitrospira to cultivation and the lack of a molecular functional marker, which would allow the detection of Nitrospira in the environment. Here we introduce nxrB, the gene encoding subunit beta of nitrite oxidoreductase, as a functional and phylogenetic marker for Nitrospira. Phylogenetic trees based on nxrB of Nitrospira were largely congruent to 16S ribosomal RNA-based phylogenies. By using new nxrB-selective polymerase chain reaction primers, we obtained almost full-length nxrB sequences from Nitrospira cultures, two activated sludge samples, and several geographically and climatically distinct soils. Amplicon pyrosequencing of nxrB fragments from 16 soils revealed a previously unrecognized diversity of terrestrial Nitrospira with 1801 detected species-level operational taxonomic units (OTUs) (using an inferred species threshold of 95% nxrB identity). Richness estimates ranged from 10 to 946 coexisting Nitrospira species per soil. Comparison with an archaeal amoA dataset obtained from the same soils [Environ. Microbiol. 14: 525-539 (2012)] uncovered that ammonia-oxidizing archaea and Nitrospira communities were highly correlated across the soil samples, possibly indicating shared habitat preferences or specific biological interactions among members of these nitrifier groups.

  • Integrating metagenomic and amplicon databases to resolve the phylogenetic and ecological diversity of the Chlamydiae.

    Lagkouvardos I, Weinmaier T, Lauro FM, Cavicchioli R, Rattei T, Horn M
    2014 - ISME J, 1: 115-25

    Abstract: 

    In the era of metagenomics and amplicon sequencing, comprehensive analyses of available sequence data remain a challenge. Here we describe an approach exploiting metagenomic and amplicon data sets from public databases to elucidate phylogenetic diversity of defined microbial taxa. We investigated the phylum Chlamydiae whose known members are obligate intracellular bacteria that represent important pathogens of humans and animals, as well as symbionts of protists. Despite their medical relevance, our knowledge about chlamydial diversity is still scarce. Most of the nine known families are represented by only a few isolates, while previous clone library-based surveys suggested the existence of yet uncharacterized members of this phylum. Here we identified more than 22,000 high quality, non-redundant chlamydial 16S rRNA gene sequences in diverse databases, as well as 1900 putative chlamydial protein-encoding genes. Even when applying the most conservative approach, clustering of chlamydial 16S rRNA gene sequences into operational taxonomic units revealed an unexpectedly high species, genus and family-level diversity within the Chlamydiae, including 181 putative families. These in silico findings were verified experimentally in one Antarctic sample, which contained a high diversity of novel Chlamydiae. In our analysis, the Rhabdochlamydiaceae, whose known members infect arthropods, represents the most diverse and species-rich chlamydial family, followed by the protist-associated Parachlamydiaceae, and a putative new family (PCF8) with unknown host specificity. Available information on the origin of metagenomic samples indicated that marine environments contain the majority of the newly discovered chlamydial lineages, highlighting this environment as an important chlamydial reservoir.

  • MScDB: a mass spectrometry-centric protein sequence database for proteomics.

    Marx H, Lemeer S, Klaeger S, Rattei T, Kuster B
    2013 - J. Proteome Res., 6: 2386-98

    Abstract: 

    Protein sequence databases are indispensable tools for life science research including mass spectrometry (MS)-based proteomics. In current database construction processes, sequence similarity clustering is used to reduce redundancies in the source data. Albeit powerful, it ignores the peptide-centric nature of proteomic data and the fact that MS is able to distinguish similar sequences. Therefore, we introduce an approach that structures the protein sequence space at the peptide level using theoretical and empirical information from large-scale proteomic data to generate a mass spectrometry-centric protein sequence database (MScDB). The core modules of MScDB are an in-silico proteolytic digest and a peptide-centric clustering algorithm that groups protein sequences that are indistinguishable by mass spectrometry. Analysis of various MScDB uses cases against five complex human proteomes, resulting in 69 peptide identifications not present in UniProtKB as well as 79 putative single amino acid polymorphisms. MScDB retains ~99% of the identifications in comparison to common databases despite a 3-48% increase in the theoretical peptide search space (but comparable protein sequence space). In addition, MScDB enables cross-species applications such as human/mouse graft models, and our results suggest that the uncertainty in protein assignments to one species can be smaller than 20%.

  • The evolutionary dynamics of protein-protein interaction networks inferred from the reconstruction of ancient networks.

    Jin Y, Turaev D, Weinmaier T, Rattei T, Makse HA
    2013 - PloS one, 3: e58134

    Abstract: 

    Cellular functions are based on the complex interplay of proteins, therefore the structure and dynamics of these protein-protein interaction (PPI) networks are the key to the functional understanding of cells. In the last years, large-scale PPI networks of several model organisms were investigated. A number of theoretical models have been developed to explain both the network formation and the current structure. Favored are models based on duplication and divergence of genes, as they most closely represent the biological foundation of network evolution. However, studies are often based on simulated instead of empirical data or they cover only single organisms. Methodological improvements now allow the analysis of PPI networks of multiple organisms simultaneously as well as the direct modeling of ancestral networks. This provides the opportunity to challenge existing assumptions on network evolution. We utilized present-day PPI networks from integrated datasets of seven model organisms and developed a theoretical and bioinformatic framework for studying the evolutionary dynamics of PPI networks. A novel filtering approach using percolation analysis was developed to remove low confidence interactions based on topological constraints. We then reconstructed the ancient PPI networks of different ancestors, for which the ancestral proteomes, as well as the ancestral interactions, were inferred. Ancestral proteins were reconstructed using orthologous groups on different evolutionary levels. A stochastic approach, using the duplication-divergence model, was developed for estimating the probabilities of ancient interactions from today's PPI networks. The growth rates for nodes, edges, sizes and modularities of the networks indicate multiplicative growth and are consistent with the results from independent static analysis. Our results support the duplication-divergence model of evolution and indicate fractality and multiplicative growth as general properties of the PPI network structure and dynamics.

  • Metagenomics of Kamchatkan hot spring filaments reveal two new major (hyper)thermophilic lineages related to Thaumarchaeota.

    Eme L, Reigstad LJ, Spang A, Lanzen A, Weinmaier T, Rattei T, Schleper C, Brochier-Armanet C
    2013 - Res. Microbiol., 5: 425-38

    Abstract: 

    Based on phylogenetic analyses and gene distribution patterns of a few complete genomes, a new distinct phylum within the Archaea, the Thaumarchaeota, has recently been proposed. Here we present analyses of six archaeal fosmid sequences derived from a microbial hot spring community in Kamchatka. The phylogenetic analysis of informational components (ribosomal RNAs and proteins) reveals two major (hyper-)thermophilic clades ("Hot Thaumarchaeota-related Clade" 1 and 2, HTC1 and HTC2) related to Thaumarchaeota, representing either deep branches of this phylum or a new archaeal phylum and provides information regarding the ancient evolution of Archaea and their evolutionary links with Eukaryotes.

  • The Genome of Nitrospina gracilis Illuminates the Metabolism and Evolution of the Major Marine Nitrite Oxidizer.

    Lücker S, Nowka B, Rattei T, Spieck E, Daims H
    2013 - Front Microbiol, 27

    Abstract: 

    In marine systems, nitrate is the major reservoir of inorganic fixed nitrogen. The only known biological nitrate-forming reaction is nitrite oxidation, but despite its importance, our knowledge of the organisms catalyzing this key process in the marine N-cycle is very limited. The most frequently encountered marine NOB are related to Nitrospina gracilis, an aerobic chemolithoautotrophic bacterium isolated from ocean surface waters. To date, limited physiological and genomic data for this organism were available and its phylogenetic affiliation was uncertain. In this study, the draft genome sequence of N. gracilis strain 3/211 was obtained. Unexpectedly for an aerobic organism, N. gracilis lacks classical reactive oxygen defense mechanisms and uses the reductive tricarboxylic acid cycle for carbon fixation. These features indicate microaerophilic ancestry and are consistent with the presence of Nitrospina in marine oxygen minimum zones. Fixed carbon is stored intracellularly as glycogen, but genes for utilizing external organic carbon sources were not identified. N. gracilis also contains a full gene set for oxidative phosphorylation with oxygen as terminal electron acceptor and for reverse electron transport from nitrite to NADH. A novel variation of complex I may catalyze the required reverse electron flow to low-potential ferredoxin. Interestingly, comparative genomics indicated a strong evolutionary link between Nitrospina, the nitrite-oxidizing genus Nitrospira, and anaerobic ammonium oxidizers, apparently including the horizontal transfer of a periplasmically oriented nitrite oxidoreductase and other key genes for nitrite oxidation at an early evolutionary stage. Further, detailed phylogenetic analyses using concatenated marker genes provided evidence that Nitrospina forms a novel bacterial phylum, for which we propose the name Nitrospinae.

  • Complete Genome Sequence of Listeria monocytogenes LL195, a Serotype 4b Strain from the 1983-1987 Listeriosis Epidemic in Switzerland.

    Weinmaier T, Riesing M, Rattei T, Bille J, Arguedas-Villa C, Stephan R, Tasara T
    2013 - Genome Announc, 1: epub

    Abstract: 

    The complete genome sequence of Listeria monocytogenes LL195, a serotype 4b clinical strain isolated during the 1983-1987 listeriosis epidemic in Switzerland, is presented.

  • Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling.

    Clarke M, Lohan AJ, Liu B, Lagkouvardos I, Roy S, Zafar N, Bertelli C, Schilde C, Kianianmomeni A, Bürglin TR, Frech C, Turcotte B, Kopec KO, Synnott JM, Choo C, Paponov I, Finkler A, Heng Tan CS, Hutchins AP, Weinmeier T, Rattei T, Chu JS, Gimenez G, Irimia M, Rigden DJ, Fitzpatrick DA, Lorenzo-Morales J, Bateman A, Chiu CH, Tang P, Hegemann P, Fromm H, Raoult D, Greub G, Miranda-Saavedra D, Chen N, Nash P, Ginger ML, Horn M, Schaap P, Caler L, Loftus BJ
    2013 - Genome Biol., 2: R11

    Abstract: 

    The Amoebozoa constitute one of the primary divisions of eukaryotes, encompassing taxa of both biomedical and evolutionary importance, yet its genomic diversity remains largely unsampled. Here we present an analysis of a whole genome assembly of Acanthamoeba castellanii (Ac) the first representative from a solitary free-living amoebozoan.
    Ac encodes 15,455 compact intron-rich genes, a significant number of which are predicted to have arisen through inter-kingdom lateral gene transfer (LGT). A majority of the LGT candidates have undergone a substantial degree of intronization and Ac appears to have incorporated them into established transcriptional programs. Ac manifests a complex signaling and cell communication repertoire, including a complete tyrosine kinase signaling toolkit and a comparable diversity of predicted extracellular receptors to that found in the facultatively multicellular dictyostelids. An important environmental host of a diverse range of bacteria and viruses, Ac utilizes a diverse repertoire of predicted pattern recognition receptors, many with predicted orthologous functions in the innate immune systems of higher organisms.
    Our analysis highlights the important role of LGT in the biology of Ac and in the diversification of microbial eukaryotes. The early evolution of a key signaling facility implicated in the evolution of metazoan multicellularity strongly argues for its emergence early in the Unikont lineage. Overall, the availability of an Ac genome should aid in deciphering the biology of the Amoebozoa and facilitate functional genomic studies in this important model organism and environmental host.

  • Draft genome sequence of Lactobacillus casei W56.

    Hochwind K, Weinmaier T, Schmid M, van Hemert S, Hartmann A, Rattei T, Rothballer M
    2012 - J. Bacteriol., 23: 6638

    Abstract: 

    We announce the draft genome sequence of Lactobacillus casei W56 in one contig. This strain shows immunomodulatory and probiotic properties. The strain is also an ingredient of commercially available probiotic products.

  • The genome of the obligate intracellular parasite Trachipleistophora hominis: new insights into microsporidian genome dynamics and reductive evolution.

    Heinz E, Williams TA, Nakjang S, Noël CJ, Swan DC, Goldberg AV, Harris SR, Weinmaier T, Markert S, Becher D, Bernhardt J, Dagan T, Hacker C, Lucocq JM, Schweder T, Rattei T, Hall N, Hirt RP, Embley TM
    2012 - PLoS Pathog., 10: e1002979

    Abstract: 

    The dynamics of reductive genome evolution for eukaryotes living inside other eukaryotic cells are poorly understood compared to well-studied model systems involving obligate intracellular bacteria. Here we present 8.5 Mb of sequence from the genome of the microsporidian Trachipleistophora hominis, isolated from an HIV/AIDS patient, which is an outgroup to the smaller compacted-genome species that primarily inform ideas of evolutionary mode for these enormously successful obligate intracellular parasites. Our data provide detailed information on the gene content, genome architecture and intergenic regions of a larger microsporidian genome, while comparative analyses allowed us to infer genomic features and metabolism of the common ancestor of the species investigated. Gene length reduction and massive loss of metabolic capacity in the common ancestor was accompanied by the evolution of novel microsporidian-specific protein families, whose conservation among microsporidians, against a background of reductive evolution, suggests they may have important functions in their parasitic lifestyle. The ancestor had already lost many metabolic pathways but retained glycolysis and the pentose phosphate pathway to provide cytosolic ATP and reduced coenzymes, and it had a minimal mitochondrion (mitosome) making Fe-S clusters but not ATP. It possessed bacterial-like nucleotide transport proteins as a key innovation for stealing host-generated ATP, the machinery for RNAi, key elements of the early secretory pathway, canonical eukaryotic as well as microsporidian-specific regulatory elements, a diversity of repetitive and transposable elements, and relatively low average gene density. Microsporidian genome evolution thus appears to have proceeded in at least two major steps: an ancestral remodelling of the proteome upon transition to intracellular parasitism that involved reduction but also selective expansion, followed by a secondary compaction of genome architecture in some, but not all, lineages.

  • Complete genome sequences of Desulfosporosinus orientis DSM765T, Desulfosporosinus youngiae DSM17734T, Desulfosporosinus meridiei DSM13257T, and Desulfosporosinus acidiphilus DSM22704T.

    Pester M, Brambilla E, Alazard D, Rattei T, Weinmaier T, Han J, Lucas S, Lapidus A, Cheng JF, Goodwin L, Pitluck S, Peters L, Ovchinnikova G, Teshima H, Detter JC, Han CS, Tapia R, Land ML, Hauser L, Kyrpides NC, Ivanova NN, Pagani I, Huntmann M, Wei CL, Davenport KW, Daligault H, Chain PS, Chen A, Mavromatis K, Markowitz V, Szeto E, Mikhailova N, Pati A, Wagner M, Woyke T, Ollivier B, Klenk HP, Spring S, Loy A
    2012 - J. Bacteriol., 22: 6300-1

    Abstract: 

    Desulfosporosinus species are sulfate-reducing bacteria belonging to the Firmicutes. Their genomes will give insights into the genetic repertoire and evolution of sulfate reducers typically thriving in terrestrial environments and able to degrade toluene (Desulfosporosinus youngiae), to reduce Fe(III) (Desulfosporosinus meridiei, Desulfosporosinus orientis), and to grow under acidic conditions (Desulfosporosinus acidiphilus).

  • The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations.

    Spang A, Poehlein A, Offre P, Zumbrägel S, Haider S, Rychlik N, Nowka B, Schmeisser C, Lebedeva EV, Rattei T, Böhm C, Schmid M, Galushko A, Hatzenpichler R, Weinmaier T, Daniel R, Schleper C, Spieck E, Streit W, Wagner M
    2012 - Environ. Microbiol., 12: 3122-45

    Abstract: 

    The cohort of the ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota is a diverse, widespread and functionally important group of microorganisms in many ecosystems. However, our understanding of their biology is still very rudimentary in part because all available genome sequences of this phylum are from members of the Nitrosopumilus cluster. Here we report on the complete genome sequence of Candidatus Nitrososphaera gargensis obtained from an enrichment culture, representing a different evolutionary lineage of AOA frequently found in high numbers in many terrestrial environments. With its 2.83 Mb the genome is much larger than that of other AOA. The presence of a high number of (active) IS elements/transposases, genomic islands, gene duplications and a complete CRISPR/Cas defence system testifies to its dynamic evolution consistent with low degree of synteny with other thaumarchaeal genomes. As expected, the repertoire of conserved enzymes proposed to be required for archaeal ammonia oxidation is encoded by N. gargensis, but it can also use urea and possibly cyanate as alternative ammonia sources. Furthermore, its carbon metabolism is more flexible at the central pyruvate switch point, encompasses the ability to take up small organic compounds and might even include an oxidative pentose phosphate pathway. Furthermore, we show that thaumarchaeota produce cofactor F420 as well as polyhydroxyalkanoates. Lateral gene transfer from bacteria and euryarchaeota has contributed to the metabolic versatility of N. gargensis. This organisms is well adapted to its niche in a heavy metal-containing thermal spring by encoding a multitude of heavy metal resistance genes, chaperones and mannosylglycerate as compatible solute and has the genetic ability to respond to environmental changes by signal transduction via a large number of two-component systems, by chemotaxis and flagella-mediated motility and possibly even by gas vacuole formation. These findings extend our understanding of thaumarchaeal evolution and physiology and offer many testable hypotheses for future experimental research on these nitrifiers.

  • Phenotypic and transcriptomic analyses of Sigma L-dependent characteristics in Listeria monocytogenes EGD-e.

    Mattila M, Somervuo P, Rattei T, Korkeala H, Stephan R, Tasara T
    2012 - Food Microbiol., 1: 152-64

    Abstract: 

    In this study the phenotypic and transcriptomic traits associated with the alternative sigma factor protein Sigma L in Listeria monocytogenes EGD-e were investigated. It was demonstrated that Sigma L is required for efficient growth in presence of stress associated with food preservative measures such as low temperature and organic acids. Furthermore, besides attenuation of swarming motility, the disruption of Sigma L in this bacterium also reduces resistance to a diverse range of toxic compounds, including some of the antibiotics used in listeriosis treatment. Genes under Sigma L-dependent transcriptional regulation were identified based on comparison of transcriptomes between exponentially growing cells of the EGD-e sigL null mutant and its parental strain cultivated under cold stress (3 °C) and optimized (37 °C) temperature conditions. Four hundred and forty genes under positive Sigma L-dependent transcriptional regulation were identified. The Sigma L regulon as revealed under these conditions comprises genes that code for proteins with diverse cellular functions including protein synthesis, nutrient transport, energy metabolism, cell envelope synthesis, and motility. The diverse range of transcriptome alterations induced by a sigL null mutation is thus consistent with the multiple phenotypic defects observed in the EGD-e ΔsigL mutant. These results demonstrate that Sigma L provides important global transcription regulatory functions in L. monocytogenes EGD-e. These promote execution of various cellular processes and stress adaptation responses thereby enabling this bacterium to overcome various food preservation measures as well as antibiotics and other toxic chemicals.

  • Phage morphology recapitulates phylogeny: the comparative genomics of a new group of myoviruses.

    Comeau AM, Tremblay D, Moineau S, Rattei T, Kushkina AI, Tovkach FI, Krisch HM, Ackermann HW
    2012 - PloS one, 7: e40102

    Abstract: 

    Among dsDNA tailed bacteriophages (Caudovirales), members of the Myoviridae family have the most sophisticated virion design that includes a complex contractile tail structure. The Myoviridae generally have larger genomes than the other phage families. Relatively few "dwarf" myoviruses, those with a genome size of less than 50 kb such as those of the Mu group, have been analyzed in extenso. Here we report on the genome sequencing and morphological characterization of a new group of such phages that infect a diverse range of Proteobacteria, namely Aeromonas salmonicida phage 56, Vibrio cholerae phages 138 and CP-T1, Bdellovibrio phage φ1422, and Pectobacterium carotovorum phage ZF40. This group of dwarf myoviruses shares an identical virion morphology, characterized by usually short contractile tails, and have genome sizes of approximately 45 kb. Although their genome sequences are variable in their lysogeny, replication, and host adaption modules, presumably reflecting differing lifestyles and hosts, their structural and morphogenesis modules have been evolutionarily constrained by their virion morphology. Comparative genomic analysis reveals that these phages, along with related prophage genomes, form a new coherent group within the Myoviridae. The results presented in this communication support the hypothesis that the diversity of phages may be more structured than generally believed and that the innumerable phages in the biosphere all belong to discrete lineages or families.

  • Effects of season and experimental warming on the bacterial community in a temperate mountain forest soil assessed by 16S rRNA gene pyrosequencing.

    Kuffner M, Hai B, Rattei T, Melodelima C, Schloter M, Zechmeister-Boltenstern S, Jandl R, Schindlbacher A, Sessitsch A
    2012 - FEMS Microbiol. Ecol., 3: 551-62

    Abstract: 

    Climate warming may induce shifts in soil microbial communities possibly altering the long-term carbon mineralization potential of soils. We assessed the response of the bacterial community in a forest soil to experimental soil warming (+4 °C) in the context of seasonal fluctuations. Three experimental plots were sampled in the fourth year of warming in summer and winter and compared to control plots by 16S rRNA gene pyrosequencing. We sequenced 17,308 amplicons per sample and analysed operational taxonomic units at genetic distances of 0.03, 0.10 and 0.25, with respective Good's coverages of 0.900, 0.977 and 0.998. Diversity indices did not differ between summer, winter, control or warmed samples. Summer and winter samples differed in community structure at a genetic distance of 0.25, corresponding approximately to phylum level. This was mainly because of an increase of Actinobacteria in winter. Abundance patterns of dominant taxa (> 0.06% of all reads) were analysed individually and revealed, that seasonal shifts were coherent among related phylogenetic groups. Seasonal community dynamics were subtle compared to the dynamics of soil respiration. Despite a pronounced respiration response to soil warming, we did not detect warming effects on community structure or composition. Fine-scale shifts may have been concealed by the considerable spatial variation.

  • Comparative analysis of benzoxazinoid biosynthesis in monocots and dicots: independent recruitment of stabilization and activation functions.

    Dick R, Rattei T, Haslbeck M, Schwab W, Gierl A, Frey M
    2012 - Plant Cell, 3: 915-28

    Abstract: 

    Benzoxazinoids represent preformed protective and allelophatic compounds that are found in a multitude of species of the family Poaceae (Gramineae) and occur sporadically in single species of phylogenetically unrelated dicots. Stabilization by glucosylation and activation by hydrolysis is essential for the function of these plant defense compounds. We isolated and functionally characterized from the dicot larkspur (Consolida orientalis) the benzoxazinoid-specific UDP-glucosyltransferase and β-glucosidase that catalyze the enzymatic functions required to avoid autotoxicity and allow activation upon challenge by herbivore and pathogen attack. A phylogenetic comparison of these enzymes with their counterparts in the grasses indicates convergent evolution by repeated recruitment from homologous but not orthologous genes. The data reveal a great evolutionary flexibility in recruitment of these essential functions of secondary plant metabolism.

  • Metatranscriptomics of the marine sponge Geodia barretti: tackling phylogeny and function of its microbial community.

    Radax R, Rattei T, Lanzen A, Bayer C, Rapp HT, Urich T, Schleper C
    2012 - Environ. Microbiol., 5: 1308-24

    Abstract: 

    Geodia barretti is a marine cold-water sponge harbouring high numbers of microorganisms. Significant rates of nitrification have been observed in this sponge, indicating a substantial contribution to nitrogen turnover in marine environments with high sponge cover. In order to get closer insights into the phylogeny and function of the active microbial community and the interaction with its host G. barretti, a metatranscriptomic approach was employed, using the simultaneous analysis of rRNA and mRNA. Of the 262 298 RNA-tags obtained by pyrosequencing, 92% were assigned to ribosomal RNA (ribo-tags). A total of 109 325 SSU rRNA ribo-tags revealed a detailed picture of the community, dominated by group SAR202 of Chloroflexi, candidate phylum Poribacteria and Acidobacteria, which was different in its composition from that obtained in clone libraries prepared form the same samples. Optimized assembly strategies allowed the reconstruction of full-length rRNA sequences from the short ribo-tags for more detailed phylogenetic studies of the dominant taxa. Cells of several phyla were visualized by FISH analyses for confirmation. Of the remaining 21 325 RNA-tags, 10 023 were assigned to mRNA-tags, based on similarities to genes in the databases. A wide range of putative functional gene transcripts from over 10 different phyla were identified among the bacterial mRNA-tags. The most abundant mRNAs were those encoding key metabolic enzymes of nitrification from ammonia-oxidizing archaea as well as candidate genes involved in related processes. Our analysis demonstrates the potential and limits of using a combined rRNA and mRNA approach to explore the microbial community profile, phylogenetic assignments and metabolic activities of a complex, but little explored microbial community.

  • Evolvability of feed-forward loop architecture biases its abundance in transcription networks.

    Widder S, Solé R, Macía J
    2012 - BMC Syst Biol, 7

    Abstract: 

    Transcription networks define the core of the regulatory machinery of cellular life and are largely responsible for information processing and decision making. At the small scale, interaction motifs have been characterized based on their abundance and some seemingly general patterns have been described. In particular, the abundance of different feed-forward loop motifs in gene regulatory networks displays systematic biases towards some particular topologies, which are much more common than others. The causative process of this pattern is still matter of debate.<br>We analyzed the entire motif-function landscape of the feed-forward loop using the formalism developed in a previous work. We evaluated the probabilities to implement possible functions for each motif and found that the kurtosis of these distributions correlate well with the natural abundance pattern. Kurtosis is a standard measure for the peakedness of probability distributions. Furthermore, we examined the functional robustness of the motifs facing mutational pressure in silico and observed that the abundance pattern is biased by the degree of their evolvability.<br>The natural abundance pattern of the feed-forward loop can be reconstructed concerning its intrinsic plasticity. Intrinsic plasticity is associated to each motif in terms of its capacity of implementing a repertoire of possible functions and it is directly linked to the motif's evolvability. Since evolvability is defined as the potential phenotypic variation of the motif upon mutation, the link plausibly explains the abundance pattern.

  • amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions.

    Pester M, Rattei T, Flechl S, Gröngröft A, Richter A, Overmann J, Reinhold-Hurek B, Loy A, Wagner M
    2012 - Environ. Microbiol., 2: 525-39

    Abstract: 

    Ammonia-oxidizing archaea (AOA) play an important role in nitrification and many studies exploit their amoA genes as marker for their diversity and abundance. We present an archaeal amoA consensus phylogeny based on all publicly available sequences (status June 2010) and provide evidence for the diversification of AOA into four previously recognized clusters and one newly identified major cluster. These clusters, for which we suggest a new nomenclature, harboured 83 AOA species-level OTU (using an inferred species threshold of 85% amoA identity). 454 pyrosequencing of amoA amplicons from 16 soils sampled in Austria, Costa Rica, Greenland and Namibia revealed that only 2% of retrieved sequences had no database representative on the species-level and represented 30-37 additional species-level OTUs. With the exception of an acidic soil from which mostly amoA amplicons of the Nitrosotalea cluster were retrieved, all soils were dominated by amoA amplicons from the Nitrososphaera cluster (also called group I.1b), indicating that the previously reported AOA from the Nitrosopumilus cluster (also called group I.1a) are absent or represent minor populations in soils. AOA richness estimates on the species level ranged from 8-83 co-existing AOAs per soil. Presence/absence of amoA OTUs (97% identity level) correlated with geographic location, indicating that besides contemporary environmental conditions also dispersal limitation across different continents and/or historical environmental conditions might influence AOA biogeography in soils.

  • eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges.

    Powell S, Szklarczyk D, Trachana K, Roth A, Kuhn M, Muller J, Arnold R, Rattei T, Letunic I, Doerks T, Jensen LJ, von Mering C, Bork P
    2012 - Nucleic Acids Res., D284-9

    Abstract: 

    Orthologous relationships form the basis of most comparative genomic and metagenomic studies and are essential for proper phylogenetic and functional analyses. The third version of the eggNOG database (http://eggnog.embl.de) contains non-supervised orthologous groups constructed from 1133 organisms, doubling the number of genes with orthology assignment compared to eggNOG v2. The new release is the result of a number of improvements and expansions: (i) the underlying homology searches are now based on the SIMAP database; (ii) the orthologous groups have been extended to 41 levels of selected taxonomic ranges enabling much more fine-grained orthology assignments; and (iii) the newly designed web page is considerably faster with more functionality. In total, eggNOG v3 contains 721,801 orthologous groups, encompassing a total of 4,396,591 genes. Additionally, we updated 4873 and 4850 original COGs and KOGs, respectively, to include all 1133 organisms. At the universal level, covering all three domains of life, 101,208 orthologous groups are available, while the others are applicable at 40 more limited taxonomic ranges. Each group is amended by multiple sequence alignments and maximum-likelihood trees and broad functional descriptions are provided for 450,904 orthologous groups (62.5%).

  • Bacteriocyte-associated gammaproteobacterial symbionts of the Adelges nordmannianae/piceae complex (Hemiptera: Adelgidae).

    Toenshoff ER, Penz T, Narzt T, Collingro A, Schmitz-Esser S, Pfeiffer S, Klepal W, Wagner M, Weinmaier T, Rattei T, Horn M
    2012 - ISME J, 2: 384-96

    Abstract: 

    Adelgids (Insecta: Hemiptera: Adelgidae) are known as severe pests of various conifers in North America, Canada, Europe and Asia. Here, we present the first molecular identification of bacteriocyte-associated symbionts in these plant sap-sucking insects. Three geographically distant populations of members of the Adelges nordmannianae/piceae complex, identified based on coI and ef1alpha gene sequences, were investigated. Electron and light microscopy revealed two morphologically different endosymbionts, coccoid or polymorphic, which are located in distinct bacteriocytes. Phylogenetic analyses of their 16S and 23S rRNA gene sequences assigned both symbionts to novel lineages within the Gammaproteobacteria sharing <92% 16S rRNA sequence similarity with each other and showing no close relationship with known symbionts of insects. Their identity and intracellular location were confirmed by fluorescence in situ hybridization, and the names 'Candidatus Steffania adelgidicola' and 'Candidatus Ecksteinia adelgidicola' are proposed for tentative classification. Both symbionts were present in all individuals of all investigated populations and in different adelgid life stages including eggs, suggesting vertical transmission from mother to offspring. An 85 kb genome fragment of 'Candidatus S. adelgidicola' was reconstructed based on a metagenomic library created from purified symbionts. Genomic features including the frequency of pseudogenes, the average length of intergenic regions and the presence of several genes which are absent in other long-term obligate symbionts, suggested that 'Candidatus S. adelgidicola' is an evolutionarily young bacteriocyte-associated symbiont, which has been acquired after diversification of adelgids from their aphid sister group.

  • Unity in variety--the pan-genome of the Chlamydiae.

    Collingro A, Tischler P, Weinmaier T, Penz T, Heinz E, Brunham RC, Read TD, Bavoil PM, Sachse K, Kahane S, Friedman MG, Rattei T, Myers GS, Horn M
    2011 - Mol. Biol. Evol., 12: 3253-70

    Abstract: 

    Chlamydiae are evolutionarily well-separated bacteria that live exclusively within eukaryotic host cells. They include important human pathogens such as Chlamydia trachomatis as well as symbionts of protozoa. As these bacteria are experimentally challenging and genetically intractable, our knowledge about them is still limited. In this study, we obtained the genome sequences of Simkania negevensis Z, Waddlia chondrophila 2032/99, and Parachlamydia acanthamoebae UV-7. This enabled us to perform the first comprehensive comparative and phylogenomic analysis of representative members of four major families of the Chlamydiae, including the Chlamydiaceae. We identified a surprisingly large core gene set present in all genomes and a high number of diverse accessory genes in those Chlamydiae that do not primarily infect humans or animals, including a chemosensory system in P. acanthamoebae and a type IV secretion system. In S. negevensis, the type IV secretion system is encoded on a large conjugative plasmid (pSn, 132 kb). Phylogenetic analyses suggested that a plasmid similar to the S. negevensis plasmid was originally acquired by the last common ancestor of all four families and that it was subsequently reduced, integrated into the chromosome, or lost during diversification, ultimately giving rise to the extant virulence-associated plasmid of pathogenic chlamydiae. Other virulence factors, including a type III secretion system, are conserved among the Chlamydiae to variable degrees and together with differences in the composition of the cell wall reflect adaptation to different host cells including convergent evolution among the four chlamydial families. Phylogenomic analysis focusing on chlamydial proteins with homology to plant proteins provided evidence for the acquisition of 53 chlamydial genes by a plant progenitor, lending further support for the hypothesis of an early interaction between a chlamydial ancestor and the primary photosynthetic eukaryote.

  • Shotgun sequencing of Yersinia enterocolitica strain W22703 (biotype 2, serotype O:9): genomic evidence for oscillation between invertebrates and mammals.

    Fuchs TM, Brandt K, Starke M, Rattei T
    2011 - BMC genomics, 168

    Abstract: 

    Yersinia enterocolitica strains responsible for mild gastroenteritis in humans are very diverse with respect to their metabolic and virulence properties. Strain W22703 (biotype 2, serotype O:9) was recently identified to possess nematocidal and insecticidal activity. To better understand the relationship between pathogenicity towards insects and humans, we compared the W22703 genome with that of the highly pathogenic strain 8081 (biotype1B; serotype O:8), the only Y. enterocolitica strain sequenced so far.
    We used whole-genome shotgun data to assemble, annotate and analyse the sequence of strain W22703. Numerous factors assumed to contribute to enteric survival and pathogenesis, among them osmoregulated periplasmic glucan, hydrogenases, cobalamin-dependent pathways, iron uptake systems and the Yersinia genome island 1 (YGI-1) involved in tight adherence were identified to be common to the 8081 and W22703 genomes. However, sets of ~550 genes revealed to be specific for each of them in comparison to the other strain. The plasticity zone (PZ) of 142 kb in the W22703 genome carries an ancient flagellar cluster Flg-2 of ~40 kb, but it lacks the pathogenicity island YAPI(Ye), the secretion system ysa and yts1, and other virulence determinants of the 8081 PZ. Its composition underlines the prominent variability of this genome region and demonstrates its contribution to the higher pathogenicity of biotype 1B strains with respect to W22703. A novel type three secretion system of mosaic structure was found in the genome of W22703 that is absent in the sequenced strains of the human pathogenic Yersinia species, but conserved in the genomes of the apathogenic species. We identified several regions of differences in W22703 that mainly code for transporters, regulators, metabolic pathways, and defence factors.
    The W22703 sequence analysis revealed a genome composition distinct from other pathogenic Yersinia enterocolitica strains, thus contributing novel data to the Y. enterocolitica pan-genome. This study also sheds further light on the strategies of this pathogen to cope with its environments.

  • B2G-FAR, a species-centered GO annotation repository.

    Götz S, Arnold R, Sebastián-León P, Martín-Rodríguez S, Tischler P, Jehl MA, Dopazo J, Rattei T, Conesa A
    2011 - Bioinformatics, 7: 919-24

    Abstract: 

    Functional genomics research has expanded enormously in the last decade thanks to the cost reduction in high-throughput technologies and the development of computational tools that generate, standardize and share information on gene and protein function such as the Gene Ontology (GO). Nevertheless, many biologists, especially working with non-model organisms, still suffer from non-existing or low-coverage functional annotation, or simply struggle retrieving, summarizing and querying these data.
    The Blast2GO Functional Annotation Repository (B2G-FAR) is a bioinformatics resource envisaged to provide functional information for otherwise uncharacterized sequence data and offers data mining tools to analyze a larger repertoire of species than currently available. This new annotation resource has been created by applying the Blast2GO functional annotation engine in a strongly high-throughput manner to the entire space of public available sequences. The resulting repository contains GO term predictions for over 13.2 million non-redundant protein sequences based on BLAST search alignments from the SIMAP database. We generated GO annotation for approximately 150 000 different taxa making available 2000 species with the highest coverage through B2G-FAR. A second section within B2G-FAR holds functional annotations for 17 non-model organism Affymetrix GeneChips.
    B2G-FAR provides easy access to exhaustive functional annotation for 2000 species offering a good balance between quality and quantity, thereby supporting functional genomics research especially in the case of non-model organisms.
    The annotation resource is available at http://www.b2gfar.org.

  • Genomic insights into the metabolic potential of the polycyclic aromatic hydrocarbon degrading sulfate-reducing Deltaproteobacterium N47.

    Bergmann F, Selesi D, Weinmaier T, Tischler P, Rattei T, Meckenstock RU
    2011 - Environ. Microbiol., 5: 1125-37

    Abstract: 

    Anaerobic degradation of polycyclic aromatic hydrocarbons (PAHs) is an important process during natural attenuation of aromatic hydrocarbon spills. However, knowledge about metabolic potential and physiology of organisms involved in anaerobic degradation of PAHs is scarce. Therefore, we introduce the first genome of the sulfate-reducing Deltaproteobacterium N47 able to catabolize naphthalene, 2-methylnaphthalene, or 2-naphthoic acid as sole carbon source. Based on proteomics, we analysed metabolic pathways during growth on PAHs to gain physiological insights on anaerobic PAH degradation. The genomic assembly and taxonomic binning resulted in 17 contigs covering most of the sulfate reducer N47 genome according to general cluster of orthologous groups (COGs) analyses. According to the genes present, the Deltaproteobacterium N47 can potentially grow with the following sugars including d-mannose, d-fructose, d-galactose, α-d-glucose-1P, starch, glycogen, peptidoglycan and possesses the prerequisites for butanoic acid fermentation. Despite the inability for culture N47 to utilize NO(3) (-) as terminal electron acceptor, genes for nitrate ammonification are present. Furthermore, it is the first sequenced genome containing a complete TCA cycle along with the carbon monoxide dehydrogenase pathway. The genome contained a significant percentage of repetitive sequences and transposase-related protein domains enhancing the ability of genome evolution. Likewise, the sulfate reducer N47 genome contained many unique putative genes with unknown function, which are candidates for yet-unknown metabolic pathways.

  • Functional analysis of the finO distal region of plasmid R1.

    Nuk MR, Reisner A, Neuwirth M, Schilcher K, Arnold R, Jehl A, Rattei T, Zechner EL
    2011 - Plasmid, 2: 159-68

    Abstract: 

    The intergenic region linking conjugative transfer and replication copy control modules of IncF plasmids shows conservation of gene homology and organization. Genes distal to finO are coordinately expressed with the upstream transfer operon encoding the majority of conjugation genes in related plasmids. Here we investigate potential functions for these genes in copy number control and in processes related to conjugation: gene transfer, pilus specific phage infection and plasmid-promoted biofilm formation by an Escherichia coli host. We find that insertional inactivation of genes in the finO distal region reduced transcriptional read through into the downstream copB gene of plasmid R1. The mutant plasmid derivatives exhibited a reduced copy number compared to the wild type. Moreover all insertion mutant derivatives of plasmid R1-16 with aberrantly low copy numbers conferred poor biofilm forming ability to their hosts. The general mutagenesis thus identified plasmid stability genes as the only plasmid functions besides conjugation genes linked to plasmid-promoted biofilm production under these laboratory conditions. Our findings imply that a novel component of cis- or trans-regulation on the transcriptional level is important to normal R1 plasmid copy number regulation.

  • MIPS: curated databases and comprehensive secondary data resources in 2010.

    Mewes HW, Ruepp A, Theis F, Rattei T, Walter M, Frishman D, Suhre K, Spannagl M, Mayer KF, Stümpflen V, Antonov A
    2011 - Nucleic Acids Res., D220-4

    Abstract: 

    The Munich Information Center for Protein Sequences (MIPS at the Helmholtz Center for Environmental Health, Neuherberg, Germany) has many years of experience in providing annotated collections of biological data. Selected data sets of high relevance, such as model genomes, are subjected to careful manual curation, while the bulk of high-throughput data is annotated by automatic means. High-quality reference resources developed in the past and still actively maintained include Saccharomyces cerevisiae, Neurospora crassa and Arabidopsis thaliana genome databases as well as several protein interaction data sets (MPACT, MPPI and CORUM). More recent projects are PhenomiR, the database on microRNA-related phenotypes, and MIPS PlantsDB for integrative and comparative plant genome research. The interlinked resources SIMAP and PEDANT provide homology relationships as well as up-to-date and consistent annotation for 38,000,000 protein sequences. PPLIPS and CCancer are versatile tools for proteomics and functional genomics interfacing to a database of compilations from gene lists extracted from literature. A novel literature-mining tool, EXCERBT, gives access to structured information on classified relations between genes, proteins, phenotypes and diseases extracted from Medline abstracts by semantic analysis. All databases described here, as well as the detailed descriptions of our projects can be accessed through the MIPS WWW server (http://mips.helmholtz-muenchen.de).

  • Effective--a database of predicted secreted bacterial proteins.

    Jehl MA, Arnold R, Rattei T
    2011 - Nucleic Acids Res., D591-5

    Abstract: 

    Protein secretion is a key virulence mechanism of pathogenic and symbiotic bacteria, which makes the investigation of secreted proteins ('effectors') crucial for understanding the molecular bacterium-host interactions. Effective (http://effectors.org) is a database of predicted bacterial secreted proteins, implementing two complementary prediction strategies for protein secretion: the identification of eukaryotic-like protein domains and the recognition of signal peptides in amino acid sequences. The Effective web portal provides user-friendly tools for browsing and retrieving comprehensive precalculated predictions for whole bacterial genomes as well as for the interactive prediction of effectors in user-provided protein sequences.

  • Complete genome sequence of Cronobacter turicensis LMG 23827, a food-borne pathogen causing deaths in neonates.

    Stephan R, Lehner A, Tischler P, Rattei T
    2011 - J. Bacteriol., 1: 309-10

    Abstract: 

    Here, we report the complete and annotated genome sequence of Cronobacter turicensis, an opportunistic food-borne pathogen, which is known as a rare but important cause of life-threatening neonatal infections. Among all proteins of C. turicensis, 223 have been annotated as virulence- and disease-related proteins.

  • Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts.

    Webster NS, Taylor MW, Behnam F, Lücker S, Rattei T, Whalan S, Horn M, Wagner M
    2010 - Environ. Microbiol., 8: 2070-82

    Abstract: 

    Marine sponges contain complex bacterial communities of considerable ecological and biotechnological importance, with many of these organisms postulated to be specific to sponge hosts. Testing this hypothesis in light of the recent discovery of the rare microbial biosphere, we investigated three Australian sponges by massively parallel 16S rRNA gene tag pyrosequencing. Here we show bacterial diversity that is unparalleled in an invertebrate host, with more than 250,000 sponge-derived sequence tags being assigned to 23 bacterial phyla and revealing up to 2996 operational taxonomic units (95% sequence similarity) per sponge species. Of the 33 previously described 'sponge-specific' clusters that were detected in this study, 48% were found exclusively in adults and larvae - implying vertical transmission of these groups. The remaining taxa, including 'Poribacteria', were also found at very low abundance among the 135,000 tags retrieved from surrounding seawater. Thus, members of the rare seawater biosphere may serve as seed organisms for widely occurring symbiont populations in sponges and their host association might have evolved much more recently than previously thought.

  • Molecular recognition determinants for type IV secretion of diverse families of conjugative relaxases.

    Lang S, Gruber K, Mihajlovic S, Arnold R, Gruber CJ, Steinlechner S, Jehl MA, Rattei T, Fröhlich KU, Zechner EL
    2010 - Mol. Microbiol., 6: 1539-55

    Abstract: 

    In preparation for transfer conjugative type IV secretion systems (T4SS) produce a nucleoprotein adduct containing a relaxase enzyme covalently linked to the 5' end of single-stranded plasmid DNA. The bound relaxase is expected to present features necessary for selective recognition by the type IV coupling protein (T4CP), which controls substrate entry to the envelope spanning secretion machinery. We prove that the IncF plasmid R1 relaxase TraI is translocated to the recipient cells. Using a Cre recombinase assay (CRAfT) we mapped two internally positioned translocation signals (TS) on F-like TraI proteins that independently mediate efficient recognition and secretion. Tertiary structure predictions for the TS matched best helicase RecD2 from Deinococcus radiodurans. The TS is widely conserved in MOB(F) and MOB(Q) families of relaxases. Structure/function relationships within the TS were identified by mutation. A key residue in specific recognition by T4CP TraD was revealed by a fidelity switch phenotype for an F to plasmid R1 exchange L626H mutation. Finally, we show that physical linkage of the relaxase catalytic domain to a TraI TS is necessary for efficient conjugative transfer.

  • Impact of natural genetic variation on the transcriptome of autotetraploid Arabidopsis thaliana.

    Yu Z, Haberer G, Matthes M, Rattei T, Mayer KF, Gierl A, Torres-Ruiz RA
    2010 - Proc. Natl. Acad. Sci. U.S.A., 41: 17809-14

    Abstract: 

    Polyploidy, the presence of more than two complete sets of chromosomes in an organism, has significantly shaped the genomes of angiosperms during evolution. Two forms of polyploidy are often considered: allopolyploidy, which originates from interspecies hybrids, and autopolyploidy, which originates from intraspecies genome duplication events. Besides affecting genome organization, polyploidy generates other genetic effects. Synthetic allopolyploid plants exhibit considerable transcriptome alterations, part of which are likely caused by the reunion of previously diverged regulatory hierarchies. In contrast, autopolyploids have relatively uniform genomes, suggesting lower alteration of gene expression. To evaluate the impact of intraspecies genome duplication on the transcriptome, we generated a series of unique Arabidopsis thaliana autotetraploids by using different ecotypes. A. thaliana autotetraploids show transcriptome alterations that strongly depend on their parental genome composition and include changed expression of both new genes and gene groups previously described from allopolyploid Arabidopsis. Alterations in gene expression are stable, nonstochastic, developmentally specific, and associated with changes in DNA methylation. We propose that Arabidopsis possesses an inherent and heritable ability to sense and respond to elevated, yet balanced chromosome numbers. The impact of natural variation on alteration of autotetraploid gene expression stresses its potential importance in the evolution and breeding of plants.

  • A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria.

    Lücker S, Wagner M, Maixner F, Pelletier E, Koch H, Vacherie B, Rattei T, Damsté JS, Spieck E, Le Paslier D, Daims H
    2010 - Proc. Natl. Acad. Sci. U.S.A., 30: 13479-84

    Abstract: 

    Nitrospira are barely studied and mostly uncultured nitrite-oxidizing bacteria, which are, according to molecular data, among the most diverse and widespread nitrifiers in natural ecosystems and biological wastewater treatment. Here, environmental genomics was used to reconstruct the complete genome of "Candidatus Nitrospira defluvii" from an activated sludge enrichment culture. On the basis of this first-deciphered Nitrospira genome and of experimental data, we show that Ca. N. defluvii differs dramatically from other known nitrite oxidizers in the key enzyme nitrite oxidoreductase (NXR), in the composition of the respiratory chain, and in the pathway used for autotrophic carbon fixation, suggesting multiple independent evolution of chemolithoautotrophic nitrite oxidation. Adaptations of Ca. N. defluvii to substrate-limited conditions include an unusual periplasmic NXR, which is constitutively expressed, and pathways for the transport, oxidation, and assimilation of simple organic compounds that allow a mixotrophic lifestyle. The reverse tricarboxylic acid cycle as the pathway for CO2 fixation and the lack of most classical defense mechanisms against oxidative stress suggest that Nitrospira evolved from microaerophilic or even anaerobic ancestors. Unexpectedly, comparative genomic analyses indicate functionally significant lateral gene-transfer events between the genus Nitrospira and anaerobic ammonium-oxidizing planctomycetes, which share highly similar forms of NXR and other proteins reflecting that two key processes of the nitrogen cycle are evolutionarily connected.

  • Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota.

    Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, Spieck E, Streit W, Stahl DA, Wagner M, Schleper C
    2010 - Trends Microbiol., 8: 331-40

    Abstract: 

    Globally distributed archaea comprising ammonia oxidizers of moderate terrestrial and marine environments are considered the most abundant archaeal organisms on Earth. Based on 16S rRNA phylogeny, initial assignment of these archaea was to the Crenarchaeota. By contrast, features of the first genome sequence from a member of this group suggested that they belong to a novel phylum, the Thaumarchaeota. Here, we re-investigate the Thaumarchaeota hypothesis by including two newly available genomes, that of the marine ammonia oxidizer Nitrosopumilus maritimus and that of Nitrososphaera gargensis, a representative of another evolutionary lineage within this group predominantly detected in terrestrial environments. Phylogenetic studies based on r-proteins and other core genes, as well as comparative genomics, confirm the assignment of these organisms to a separate phylum and reveal a Thaumarchaeota-specific set of core informational processing genes, as well as potentially ancestral features of the archaea.

  • Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture.

    Abu Laban N, Selesi D, Rattei T, Tischler P, Meckenstock RU
    2010 - Environ. Microbiol., 10: 2783-96

    Abstract: 

    Anaerobic benzene degradation was studied with a highly enriched iron-reducing culture (BF) composed of mainly Peptococcaceae-related Gram-positive microorganisms. The proteomes of benzene-, phenol- and benzoate-grown cells of culture BF were compared by SDS-PAGE. A specific benzene-expressed protein band of 60 kDa, which could not be observed during growth on phenol or benzoate, was subjected to N-terminal sequence analysis. The first 31 amino acids revealed that the protein was encoded by ORF 138 in the shotgun sequenced metagenome of culture BF. ORF 138 showed 43% sequence identity to phenylphosphate carboxylase subunit PpcA of Aromatoleum aromaticum strain EbN1. A LC/ESI-MS/MS-based shotgun proteomic analysis revealed other specifically benzene-expressed proteins with encoding genes located adjacent to ORF 138 on the metagenome. The protein products of ORF 137, ORF 139 and ORF 140 showed sequence identities of 37% to phenylphosphate carboxylase PpcD of A. aromaticum strain EbN1, 56% to benzoate-CoA ligase (BamY) of Geobacter metallireducens and 67% to 3-octaprenyl-4-hydroxybenzoate carboxy-lyase (UbiD/UbiX) of A. aromaticum strain EbN1 respectively. These genes are proposed as constituents of a putative benzene degradation gene cluster (∼ 17 kb) composed of carboxylase-related genes. The identified gene sequences suggest that the initial activation reaction in anaerobic benzene degradation is probably a direct carboxylation of benzene to benzoate catalysed by putative anaerobic benzene carboxylase (Abc). The putative Abc probably consists of several subunits, two of which are encoded by ORFs 137 and 138, and belongs to a family of carboxylases including phenylphosphate carboxylase (Ppc) and 3-octaprenyl-4-hydroxybenzoate carboxy-lyase (UbiD/UbiX).

  • Independent evolution of the core domain and its flanking sequences in small heat shock proteins.

    Kriehuber T, Rattei T, Weinmaier T, Bepperling A, Haslbeck M, Buchner J
    2010 - FASEB J., 10: 3633-42

    Abstract: 

    Small heat shock proteins (sHsps) are molecular chaperones involved in maintaining protein homeostasis; they have also been implicated in protein folding diseases and in cancer. In this protein family, a conserved core domain, the so-called α-crystallin or Hsp20 domain, is flanked by highly variable, nonconserved sequences that are essential for chaperone function. Analysis of 8714 sHsps revealed a broad variation of primary sequences within the superfamily as well as phyla-dependent differences. Significant variations were found in the number of sHsps per genome, their amino acid composition, and the length distribution of the different sequence parts. Reconstruction of the evolutionary tree for the sHsp superfamily shows that the flanking regions fall into several subgroups, indicating that they were remodeled several times in parallel but independent of the evolution of the α-crystallin domain. The evolutionary history of sHsps is thus set apart from that of other protein families in that two exon boundary-independent strategies are combined: the evolution of the conserved α-crystallin domain and the independent evolution of the N- and C-terminal sequences. This scenario allows for increased variability in specific small parts of the protein and thus promotes functional and structural differentiation of sHsps, which is not reflected in the general evolutionary tree of species.

  • The dynamic genome of Hydra.

    Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, Rattei T, Balasubramanian PG, Borman J, Busam D, Disbennett K, Pfannkoch C, Sumin N, Sutton GG, Viswanathan LD, Walenz B, Goodstein DM, Hellsten U, Kawashima T, Prochnik SE, Putnam NH, Shu S, Blumberg B, Dana CE, Gee L, Kibler DF, Law L, Lindgens D, Martinez DE, Peng J, Wigge PA, Bertulat B, Guder C, Nakamura Y, Ozbek S, Watanabe H, Khalturin K, Hemmrich G, Franke A, Augustin R, Fraune S, Hayakawa E, Hayakawa S, Hirose M, Hwang JS, Ikeo K, Nishimiya-Fujisawa C, Ogura A, Takahashi T, Steinmetz PR, Zhang X, Aufschnaiter R, Eder MK, Gorny AK, Salvenmoser W, Heimberg AM, Wheeler BM, Peterson KJ, Böttger A, Tischler P, Wolf A, Gojobori T, Remington KA, Strausberg RL, Venter JC, Technau U, Hobmayer B, Bosch TC, Holstein TW, Fujisawa T, Bode HR, David CN, Rokhsar DS, Steele RE
    2010 - Nature, 7288: 592-6

    Abstract: 

    The freshwater cnidarian Hydra was first described in 1702 and has been the object of study for 300 years. Experimental studies of Hydra between 1736 and 1744 culminated in the discovery of asexual reproduction of an animal by budding, the first description of regeneration in an animal, and successful transplantation of tissue between animals. Today, Hydra is an important model for studies of axial patterning, stem cell biology and regeneration. Here we report the genome of Hydra magnipapillata and compare it to the genomes of the anthozoan Nematostella vectensis and other animals. The Hydra genome has been shaped by bursts of transposable element expansion, horizontal gene transfer, trans-splicing, and simplification of gene structure and gene content that parallel simplification of the Hydra life cycle. We also report the sequence of the genome of a novel bacterium stably associated with H. magnipapillata. Comparisons of the Hydra genome to the genomes of other animals shed light on the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, the Spemann-Mangold organizer, pluripotency genes and the neuromuscular junction.

  • Targeting effectors: the molecular recognition of Type III secreted proteins.

    Arnold R, Jehl A, Rattei T
    2010 - Microbes Infect., 5: 346-58

    Abstract: 

    The Type III secretion system (TTSS) facilitates the export of effector proteins from pathogenic and symbiotic Gram-negative bacteria into the cytosol of eukaryotic host cells. The current functional and evolutionary knowledge on the molecular recognition of TTSS substrates and computational models of the secretion signal are discussed in this review.

  • Genome sequencing and analysis of the model grass Brachypodium distachyon.

    Vogel JP, Garvin DF, Mockler TC, Schmutz J, Rokhsar D, Bevan MW, Barry K, Lucas S, Harmon-Smith M, Lail K, Tice H, Grimwood J, McKenzie N, Huo N, Gu YQ, Lazo GR, Anderson OD, You FM, Luo MC, Dvorak J, Wright J, Febrer M, Idziak D, Hasterok R, Lindquist E, Wang M, Fox SE, Priest HD, Filichkin SA, Givan SA, Bryant DW, Chang JH, Wu H, Wu W, Hsia AP, Schnable PS, Kalyanaraman A, Barbazuk B, Michael TP, Hazen SP, Bragg JN, Laudencia-Chingcuanco D, Weng Y, Haberer G, Spannagl M, Mayer K, Rattei T, Mitros T, Lee SJ, Rose JK, Mueller LA, York TL, Wicker T, Buchmann JP, Tanskanen J, Schulman AH, Gundlach H, Bevan M, de Oliveira AC, Maia Lda C, and 100 more
    2010 - Nature, 7282: 763-8

    Abstract: 

    Three subfamilies of grasses, the Ehrhartoideae, Panicoideae and Pooideae, provide the bulk of human nutrition and are poised to become major sources of renewable energy. Here we describe the genome sequence of the wild grass Brachypodium distachyon (Brachypodium), which is, to our knowledge, the first member of the Pooideae subfamily to be sequenced. Comparison of the Brachypodium, rice and sorghum genomes shows a precise history of genome evolution across a broad diversity of the grasses, and establishes a template for analysis of the large genomes of economically important pooid grasses such as wheat. The high-quality genome sequence, coupled with ease of cultivation and transformation, small size and rapid life cycle, will help Brachypodium reach its potential as an important model system for developing new energy and food crops.

  • The genome of the amoeba symbiont "Candidatus Amoebophilus asiaticus" reveals common mechanisms for host cell interaction among amoeba-associated bacteria.

    Schmitz-Esser S, Tischler P, Arnold R, Montanaro J, Wagner M, Rattei T, Horn M
    2010 - J. Bacteriol., 4: 1045-57

    Abstract: 

    Protozoa play host for many intracellular bacteria and are important for the adaptation of pathogenic bacteria to eukaryotic cells. We analyzed the genome sequence of "Candidatus Amoebophilus asiaticus," an obligate intracellular amoeba symbiont belonging to the Bacteroidetes. The genome has a size of 1.89 Mbp, encodes 1,557 proteins, and shows massive proliferation of IS elements (24% of all genes), although the genome seems to be evolutionarily relatively stable. The genome does not encode pathways for de novo biosynthesis of cofactors, nucleotides, and almost all amino acids. "Ca. Amoebophilus asiaticus" encodes a variety of proteins with predicted importance for host cell interaction; in particular, an arsenal of proteins with eukaryotic domains, including ankyrin-, TPR/SEL1-, and leucine-rich repeats, which is hitherto unmatched among prokaryotes, is remarkable. Unexpectedly, 26 proteins that can interfere with the host ubiquitin system were identified in the genome. These proteins include F- and U-box domain proteins and two ubiquitin-specific proteases of the CA clan C19 family, representing the first prokaryotic members of this protein family. Consequently, interference with the host ubiquitin system is an important host cell interaction mechanism of "Ca. Amoebophilus asiaticus". More generally, we show that the eukaryotic domains identified in "Ca. Amoebophilus asiaticus" are also significantly enriched in the genomes of other amoeba-associated bacteria (including chlamydiae, Legionella pneumophila, Rickettsia bellii, Francisella tularensis, and Mycobacterium avium). This indicates that phylogenetically and ecologically diverse bacteria which thrive inside amoebae exploit common mechanisms for interaction with their hosts, and it provides further evidence for the role of amoebae as training grounds for bacterial pathogens of humans.

  • The Negatome database: a reference set of non-interacting protein pairs.

    Smialowski P, Pagel P, Wong P, Brauner B, Dunger I, Fobo G, Frishman G, Montrone C, Rattei T, Frishman D, Ruepp A
    2010 - Nucleic Acids Res., D540-4

    Abstract: 

    The Negatome is a collection of protein and domain pairs that are unlikely to be engaged in direct physical interactions. The database currently contains experimentally supported non-interacting protein pairs derived from two distinct sources: by manual curation of literature and by analyzing protein complexes with known 3D structure. More stringent lists of non-interacting pairs were derived from these two datasets by excluding interactions detected by high-throughput approaches. Additionally, non-interacting protein domains have been derived from the stringent manual and structural data, respectively. The Negatome is much less biased toward functionally dissimilar proteins than the negative data derived by randomly selecting proteins from different cellular locations. It can be used to evaluate protein and domain interactions from new experiments and improve the training of interaction prediction algorithms. The Negatome database is available at http://mips.helmholtz-muenchen.de/proj/ppi/negatome.

  • SIMAP--a comprehensive database of pre-calculated protein sequence similarities, domains, annotations and clusters.

    Rattei T, Tischler P, Götz S, Jehl MA, Hoser J, Arnold R, Conesa A, Mewes HW
    2010 - Nucleic Acids Res., D223-6

    Abstract: 

    The prediction of protein function as well as the reconstruction of evolutionary genesis employing sequence comparison at large is still the most powerful tool in sequence analysis. Due to the exponential growth of the number of known protein sequences and the subsequent quadratic growth of the similarity matrix, the computation of the Similarity Matrix of Proteins (SIMAP) becomes a computational intensive task. The SIMAP database provides a comprehensive and up-to-date pre-calculation of the protein sequence similarity matrix, sequence-based features and sequence clusters. As of September 2009, SIMAP covers 48 million proteins and more than 23 million non-redundant sequences. Novel features of SIMAP include the expansion of the sequence space by including databases such as ENSEMBL as well as the integration of metagenomes based on their consistent processing and annotation. Furthermore, protein function predictions by Blast2GO are pre-calculated for all sequences in SIMAP and the data access and query functions have been improved. SIMAP assists biologists to query the up-to-date sequence space systematically and facilitates large-scale downstream projects in computational biology. Access to SIMAP is freely provided through the web portal for individuals (http://mips.gsf.de/simap/) and for programmatic access through DAS (http://webclu.bio.wzw.tum.de/das/) and Web-Service (http://mips.gsf.de/webservices/services/SimapService2.0?wsdl).

  • Combined genomic and proteomic approaches identify gene clusters involved in anaerobic 2-methylnaphthalene degradation in the sulfate-reducing enrichment culture N47.

    Selesi D, Jehmlich N, von Bergen M, Schmidt F, Rattei T, Tischler P, Lueders T, Meckenstock RU
    2010 - J. Bacteriol., 1: 295-306

    Abstract: 

    The highly enriched deltaproteobacterial culture N47 anaerobically oxidizes the polycyclic aromatic hydrocarbons naphthalene and 2-methylnaphthalene, with sulfate as the electron acceptor. Combined genome sequencing and liquid chromatography-tandem mass spectrometry-based shotgun proteome analyses were performed to identify genes and proteins involved in anaerobic aromatic catabolism. Proteome analysis of 2-methylnaphthalene-grown N47 cells resulted in the identification of putative enzymes catalyzing the anaerobic conversion of 2-methylnaphthalene to 2-naphthoyl coenzyme A (2-naphthoyl-CoA), as well as the reductive ring cleavage of 2-naphthoyl-CoA, leading to the formation of acetyl-CoA and CO(2). The glycyl radical-catalyzed fumarate addition to the methyl group of 2-methylnaphthalene is catalyzed by naphthyl-2-methyl-succinate synthase (Nms), composed of alpha-, beta-, and gamma-subunits that are encoded by the genes nmsABC. Located upstream of nmsABC is nmsD, encoding the Nms-activating enzyme, which harbors the characteristic [Fe(4)S(4)] cluster sequence motifs of S-adenosylmethionine radical enzymes. The bns gene cluster, coding for enzymes involved in beta-oxidation reactions converting naphthyl-2-methyl-succinate to 2-naphthoyl-CoA, was found four intervening open reading frames further downstream. This cluster consists of eight genes (bnsABCDEFGH) corresponding to 8.1 kb, which are closely related to genes for enzymes involved in anaerobic toluene degradation within the denitrifiers "Aromatoleum aromaticum" EbN1, Azoarcus sp. strain T, and Thauera aromatica. Another contiguous DNA sequence harbors the gene for 2-naphthoyl-CoA reductase (ncr) and 16 additional genes that were found to be expressed in 2-methylnaphthalene-grown cells. These genes code for enzymes that were supposed to catalyze the dearomatization and ring cleavage reactions converting 2-naphthoyl-CoA to acetyl-CoA and CO(2). Comparative sequence analysis of the four encoding subunits (ncrABCD) showed the gene product to have the closest similarity to the Azoarcus type of benzoyl-CoA reductase. The present work provides the first insight into the genetic basis of anaerobic 2-methylnaphthalene metabolism and delivers implications for understanding contaminant degradation.

Book chapters and other publications

No matching database entries were found.